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Abstract
We introduce PSec, a domain-specific language for programming
secure distributed systems. PSec is a state-machine based program-
ming language with information flow control capabilities that lever-
ages Intel SGX enclaves to provide security guarantees at runtime.
Combining state machines and information flow control with hard-
ware enclaves enables programmers to build complex distributed
systems without inadvertently leaking sensitive information to ad-
versaries. We formally prove the security properties of PSec and
evaluate our work by programming several real-world examples,
including One Time Passcode and Secure Electronic Voting sys-
tems. We present performance results of PSec systems and show
that there is an acceptable performance overhead of ∼3x for long
running systems with a possible minimum of ∼1.2x, as compared
to baseline systems that do not provide any security guarantees.

CCS Concepts
• Security and privacy→ Distributed systems security; Infor-
mation flow control.
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1 Introduction
Distributed systems are essential to modern computing. The ability
to break a computationally complex task into multiple parts and
divide the workload between multiple computers leads to more
efficient computing as well as more modular components. Since
this design is powerful and used widely, many domain-specific
programming languages have been developed that enable program-
mers to more readily develop these kinds of systems. Unfortunately,
ensuring the resulting distributed systems are secure is a different
problem entirely. Programming secure distributed systems is still
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an active area of research because writing secure code is innately a
hard problem. While enabling programmers to write performant
code, lower-level programming languages such as C/C++ are sus-
ceptible to attacks such as buffer overflows. Even when using higher
level languages, programmers generally have to understand the
basics of cryptography to properly initialize and effectively use
cryptographic code and libraries for sensitive operations. This can
prove troublesome, as in the case of the Sony PS3 Private Signing
Key leak [13] where programmers actually used the same random
number for each ECDSA signature, enabling hackers to crack the
private key and trick PS3s into running malicious code. In the dis-
tributed setting, using proper cryptography is especially critical
to transmit secure messages. However, even if the message is sent
securely, there are no guarantees that the receiving machine will
not accidentally leak the underlying sensitive data to adversaries.
Addressing this challenge requires combining cryptography with
information flow analysis and validating certain trust assumptions
about the platform on which the system is deployed.

1.1 Related Work
In the past, programming language research in secure distributed
systems has generally focused on preventing sensitive data from
being inadvertently leaked. Works such as Jif/split [25], SIF [3],
Swift [2], and Fabric [14] utilize language-based information flow
control to enforce confidentiality and integrity policies on data
passed through the system. A main assumption behind these ap-
proaches is the correctness of the trust designation system, which
requires entities to specify which nodes they believe to be running
compliant code. However, if an entity trusts a potentially corrupted
node, they lose any security guarantees provided by the system.
Additionally, this trust definition often requires trust assumptions
on the hardware and operating system. Although this may be a fair
assumption in most cases, this attack surface is by no means small
and stronger adversaries may be able to exploit bugs and security
vulnerabilities to compromise even trusted systems.

More recently, research has leveraged Trusted Execution Envi-
ronments (TEEs) such as Intel SGX [5] to reduce trust assumptions
on hardware and operating systems while enabling programmers to
readily implement secure applications. IMPe [8] is an information
flow control calculus that uses Intel SGX enclaves to provide secure
memory. However, IMPe is not tailored to the distributed setting.
Verifiable Confidential Cloud Computing (VC3) [18] does enable
secure distributed computation with enclaves, but is restricted to
the MapReduce case and is not tailored for general applications.
Ryoan [12] creates a secure distributed sandbox that leverages SGX
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to protect against malicious distributed hosts. The authors design
various secure protocols for sensitive data transmission and imple-
ment a variety of applications, but it is important to note that this
is not a language based approach. Overall, although enclave-based
frameworks do exist, there are not many programming frameworks
that readily enable easy programming of distributed enclave appli-
cations. There is a need for a programming language that provides
programmers the right level of abstraction while enabling them to
effectively write distributed secure code. Although EActors [16],
a more recent example, does try to accomplish this by presenting
an actor-based programming language that leverages Intel SGX for
trusted communication, it neither provides sufficient programmer
protections nor protects programs from inadvertently leaking data
to untrusted parties.

For our work, we seek to combine the aforementioned lines
of research and create a high-level programming language that
provides the right level of abstraction and enables programmers
to easily write secure distributed applications. We leverage hard-
ware enclaves for secure distributed computing and provide a high
level language with information flow guarantees to prevent pro-
grammers from inadvertently leaking data. We build on top of the
P programming language [6, 7], a state-machine based language
for distributed systems, because of its easy to understand nature
and ability to express complex applications. We extend various P
constructs as well as add new language features to support secure
distributed computing.

1.2 Contributions and Roadmap
To summarize, the core novel contributions of this work are:
(1) We present a state-machine based programming language for

creating secure distributed systems, with an information flow
control type system to prevent secure data from being leaked
to untrusted systems or being maliciously corrupted.

(2) We present a runtime to enable the secure creation of state ma-
chines and the ability to securely send messages between them.
We also create a trust designation system in order to establish
trust between state machines. Finally, we provide formal proofs
for the confidentiality and integrity properties provided by our
programming framework.

(3) We present initial performance metrics on an implementation of
our language and system (located at our GitHub repo1). We have
implemented a variety of examples to demonstrate language
expressiveness and measure our language overhead to be ∼3x
for longer running systems, with a possible minimum of ∼1.2x.
The remainder of this paper is structured as follows: Section 2

provides an overview of PSec; Section 3 describes the PSec language
design; Section 4 discusses the PSec Type Checker and provides
formalisms; Section 5 describes PSec’s implementation; Section 6
presents an evaluation of our system; and Section 7 and Section 8
conclude and discuss future work.

1https://github.com/ShivKushwah/PSec

2 Overview
In this section, we provide an overview of PSec, a language

that provides high level state-machine based abstractions for imple-
menting secure distributed systems. We build on top of P [6, 7], a
state-machine based programming language for building safe asyn-
chronous distributed systems. PSec allows programmers to create
regular P state machines (untrusted state machines, or USMs) as
well as state machines hosted within secure hardware (secure state
machines, or SSMs). Programmers can mark certain variables as
secure to prevent them from being inadvertently leaked to the un-
trusted world and can use PSec’s send primitive to securely send
messages. PSec leverages TEEs such as Intel SGX and combines
them with secure machine creation and message exchange pro-
tocols to enable programmers to design distributed systems with
security guarantees (guarantees detailed in Section 4.3).

2.1 Background
ThePProgramming Language: P is a language for asynchronous
event-driven programming. It allows the programmer to specify
the system as a collection of state machines that communicate with
each other using events. P unifies modeling, programming, and
verification, and generates executable C code to bridge the gap
between a high-level model and the low-level implementation. It
has been used to develop the USB 3.0 driver inside Windows 8.1
and is currently run on hundreds of millions of devices worldwide.
More recently, P is being used inside Amazon Web Services to build
reliable distributed services. We refer the readers to the modular P
paper [7] for more details. Given its easy to use nature and ability
to express complex distributed applications, P serves as an ideal
base to build from and we found it to be readily adaptable to target
the creation of secure distributed systems.

Intel SGX: Intel Software Guard Extensions (SGX) takes ad-
vantage of a specialized instruction set in newer Intel CPUs that
allows developers to create enclaves, or secure areas of execution in
memory. The content of these enclaves is protected from all other
processes (including the OS) and is only decrypted on the fly by
the CPU to run the commands. Intel also provides a way to attest
these enclaves to verify their identity and that they have not been
tampered with.

Unfortunately, writing Intel SGX code is a very non-trivial task.
For example, a bare bones version of attestation using the Intel
SGX SDK requires 1000+ lines of C++ code. In addition to this, code
executed within the enclave only has access to a restricted set of
LibC++, which makes converting normal programs to “enclave"
programs an arduous task. Further wrappers on top of the Intel
SGX SDK do exist (such as Microsoft Open Enclave SDK [15]), but
these also require extensive knowledge of basic enclave primitives.
Although enclaves provide confidentiality and integrity properties,
it is hard to leverage them without building up a non-trivial amount
of domain expertise. In this paper, we will demonstrate how PSec
leverages this technology and makes it easier for programmers to
utilize enclaves to build complex applications.

2.2 Civitas Secure Voting
Throughout this work, we will take a secure voting system as a
running example to illustrate key PSec features. Civitas [4] is an
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Figure 1: Civitas Architecture2

remote electronic voting system designed at Cornell that formally
provides coercion resistance (voters cannot prove how they voted)
and voter verifiability (final tally is correct) properties. As depicted
in Figure 1, voters send votes to Ballot Box machines in the voting
phase. Then, in the vote counting phase, these votes are submitted
to the Tabulation Tellers who eliminate duplicate votes and votes
with incorrect credentials. The final votes are aggregated and sent
to the Bulletin Board, which displays the results of the election.
Throughout, the Election Supervisor performs administrative tasks
and starts/stops the election. The Civitas design relies on various
cryptography schemes to ensure election data is untampered with,
and correctly deduplicated and counted.

We implement a version of the Civitas example using the PSec
language. Since in PSec we have confidentiality and integrity prop-
erties (Theorem 4.1), we can achieve close guarantees to Civitas
with a streamlined implementation of the system (discussed in Sec-
tion 6.1). In our system, the Election Supervisor provides a Secure
Voting Client that the Voter uses to securely submit their votes. The
votes are then securely sent to Ballot Box and ultimately end up at
the Bulletin Board. We indicate this architecture in Figure 1 where
the trusted components (in green) are implemented as PSec SSMs,
the untrusted components are implemented as USMs, and the vote
is marked as a secret to provide the guarantees described above.

2.3 PSec Language
We will use abridged code snippets (Figure 2) from our Civitas ex-
ample to demonstrate key PSec language constructs. In this snippet,
the Voter USM requests the Supervisor SSM to provision a trusted
Secure Voting Client SSM on the same host as itself. Then, it val-
idates this newly created SSM before entrusting it with its secret
vote. After that, the Voting Client SSM securely submits this vote
to the Ballot Box SSM. We discuss various PSec constructs below.

Events: In P, state machines communicate with each other by
sending events asynchronously. PSec builds on this concept and
introduces trusted events (contain non-malicious payloads origi-
nating from the trusted world) and untrusted events (may contain
corrupt/incorrect payloads from untrusted world). Since trusted
events contain sensitive/trusted data, we enforce that these events
are only sent between trusted SSMs and their content never leaks

to the untrusted world. In contrast, untrusted events can be sent be-
tween any two parties, so we prevent these events from containing
sensitive payloads. In Figure 2, we declare the relevant untrusted
events for our example on lines 1 - 4 and trusted events on lines 5 -
7. For example, we make eTrustedVote a trusted event because it
contains a confidential vote as its payload.

Machine Declaration and Creation: We declare SSMs (such
as line 8 for Election Supervisor) with a secure_machine annotation
and USMs (line 50 for Voter) with a machine annotation. Upon creat-
ing a new state machine, a machine handle is returned to the creator
machine. In lines 20 - 21 of Figure 2, the Supervisor SSM creates
an instance of a Secure Voting Client SSM and receives a secure_-

machine handle in return. This is because a SSM to SSM creation
gives us secure process creation guarantees (explained in Section
5.3); all other creation scenarios result in a machine handle being
returned. PSec additionally introduces the @ command to allow
programmers to indicate where state machines should be created.
By using the @ command in this line, we receive the guarantee that
the Secure Voting Client SSM will be created on the same physical
host as the voterMachine (which in this case is a Voter USM).

Additionally, secure_machine handles are treated as sensitive and
only reside in SSMs. We enforce secure send semantics by requir-
ing trusted events to be sent by invoking the send command with
a secure_machine handle as opposed to a regular machine handle.
As shown in line 27, secure_machine handles can be converted to
machine handles using the Declassify command, but not vice versa.

Each PSec state machine has programmer defined event handlers
that execute when an event is received. In lines 16 - 28 of Figure 2,
the Supervisor SSM has an event handler that executes when the
eSecureVotingClientReq event is received. On receiving this event,
the Supervisor SSM creates the Voting Client SSM and sends it a
trusted event containing the secure_machine handle of the Ballot
Box SSM (so that it knows where to securely send future votes to).
Finally, the Supervisor SSM sends an untrusted event containing
the machine handle of the Voting Client SSM to the requesting Voter
USM so they can communicate later.

Local Authentication and Sealing: PSec provides a
localAuthenticate construct that allows USMs to verify that any
local SSMs are actually running valid code. This is important be-
cause it enables programmers to express applications in which
clients may be running in the untrusted world, but need to use
secure infrastructure for sensitive tasks. This construct is essential
in our example (lines 57 - 62 in Figure 2) when the Voter USM
wants to authenticate the Voting Client SSM provisioned on its
system before trusting it with the confidential vote. Since the Voter
USM can only send untrusted events, it needs to validate that the
Voting Client SSM will Endorse its vote as a sensitive data type and
forward it to the Ballot Box SSM as a eTrustedVote event (lines 81 -
86). We additionally provide a seal and unseal language construct
to enable SSMs to securely store sensitive data in a encrypted form
on untrusted memory (outlined in Section 3.3).

Information Flow Analysis: PSec utilizes information flow
analysis to ensure that sensitive data is not leaked to the untrusted
world and that trusted data is not corrupted. We elaborate more in
Section 4.1, but the high level idea is that trusted events must only

2Certain icons taken from https://icons8.com/
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Figure 2: PSec Code Snippets

contain secure types while untrusted events should not contain
any secure data types. This is shown on lines 81 - 86 in Figure 2,
where the non-secure payload needs to explicitly Endorsed before
being placed in an eTrustedVote event, and also in the Supervisor
SSM code snippet (lines 26 - 27), where the secureVotingClient
(a secure_machine handle) needs to be Declassifyed to a machine

handle for the untrusted eSecureVotingClientResp event.

2.4 PSec Adversary Model and Guarantees
Adversaries: We assume that there are different levels of adver-
saries and PSec provides different guarantees against each one.
(1) Passive Network Observer: Can observe all network traffic and

extract relevant data from network requests.
(2) Active Man-in-the-Middle: Can additionally tamper with net-

work traffic and extract relevant information.
(3) Privileged Attacker: Can additionally corrupt host machines and

spin up malicious enclaves on these hosts as needed (containing
valid PSec code or custom malicious code). Also, has privileged
access in the untrusted world and can tamper with all internal
state for the host machines, except state stored within enclaves.

Guarantees:We provide an overview of the PSec security guaran-
tees against the aforementioned adversaries and discuss the imple-
mentation enabling them in later sections.
(1) Passive Network Observer: PSec uses cryptography to prevent

network observers from determining message payloads, but the

adversary can determine which 2 parties are communicating as
well as message types and lengths.

(2) Active Man-in-the-Middle: PSec enables state machines to detect
if any message payloads have been tampered with, but the ad-
versary can induce denial-of-service (DoS) attacks by dropping
or corrupting messages.

(3) Privileged Attackers: Privileged attackers have control over the
entire untrusted world (USMs, distributed hosts, network). As
a result, privileged attackers can send authenticated messages
from compromised parties to other state machines in our system.
However, since PSec prevents SSMs from ever giving secrets to
the untrusted world, this angle of attack will not prove fruitful.
Privileged attackers can additionally create SSMs by spinning
up their ownmalicious enclaves running custom code. However,
SSMs additionally do not send secrets to untrusted SSMs (SSMs
that the current machine does not have a secure_machine handle
for). Generally, any data received from the parties mentioned
above is regarded as untrusted.
It is important to note that DoS attacks cannot be prevented in

any case because this is a fundamental limitation of enclaves as they
rely on their host machines for network operations. Regardless,
PSec guarantees that no secret data is ever leaked.

Additionally, PSec utilizes a trusted Key Provisioning Server
(KPS) to bootstrap trust for our various protocols and serve as the
root of trust for machines in our system. We assume that the KPS
has a correct implementation and is hosted on a trusted server to
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enable us to provide the aforementioned guarantees. We elaborate
more on the design on the KPS and how it ties in with the security
of the system in Section 5.1.

Finally, similar to other SGX-related work in this area (such as
the EActors programming language [16]), we consider side-channel
attacks (such as page-fault attacks [20] and cache-timing attacks [9])
to be out of scope. These attacks have counter-measures that can
be implemented independently [10, 19] from our approach, and we
leave that as future work.

3 PSec Language Design
While designing PSec, we wanted to create language constructs
that enable programmers to implement real-world systems. Secure
distributed systems, which consist of trusted entities, may have to
interact with external untrusted entities for input or to execute non-
sensitive tasks. As a result, we want to incorporate the concepts of
both trusted and untrusted state machines in PSec. We accomplish
this by enabling programmers to choose between 2 types of PSec
state machines: secure state machines (SSMs) and untrusted state
machines (USMs). SSMs are trusted to run sensitive code and cor-
rectly handle secret data while USMs run in the untrusted world.
PSec is built as an extension to the P language, and we outline
notable differences in the following sections.

3.1 Machine Creation
Rationale: Since PSec machines are created dynamically, we need
a way to securely create state machines on the fly. In addition to
this, we need a way to designate trust so that state machines are
confident that they are communicating with trusted entities. We
define trust in the following way: if A trusts B, A assumes that B
will not leak any sensitive data nor send any malicious inputs.

Our initial approach had SSMs trust all other SSMs running
valid PSec code for that particular application. This would prevent
attacks in which privileged adversaries spin up SSMs containing
malicious, custom code. However, this designation of trust is too
broad because adversaries can spin up their own SSMs (running
valid PSec code) and convince our SSMs to send them sensitive
data. Although SSMs do not leak data to their hosts, the adversaries
can more easily perform DoS attacks on local machines and our
machines would be waiting on responses that will never come.

A more sensible designation relies on having trust chains cen-
tered around machine creation. In this scheme, the primary driver
is that SSMs trust any SSMs they have created and these child SSMs
trust their parent SSM. The secondary driver is through trust des-
ignation – child SSMs additionally trust SSMs deemed by a fellow
trusted SSM to be trustworthy. The last point is an important dis-
tinction because this enables trust to flow in a chain rather than a
tree, which is important in enabling us to express real-world appli-
cations. Initial trust is bootstrapped by having the first SSM in the
system be created on a trusted host machine. If this trusted host
machine is corrupted, the worst case scenario is again a denial of
service. However, we argue that this point of failure is smaller than
the point of failure discussed in the previous approach. With this
approach in mind, we design our machine creation as follows.

Design:Machine creation falls in the following cases:
(1) Trusted Create: SSM1 creates SSM2

(2) Untrusted Create: SSM1 creates USM1 or USM1 creates USM2
or USM1 creates SSM1
Both of these utilize the PSec Runtime to send the state machine

creation request to the correct host machine. In the untrusted create
case, the creator machine receives the machine handle of the newly
created machine. In the trusted create case, the creator SSM receives
the handle as well as the capability to send trusted data to the
newly created SSM. The type of the returned handle is secure_-

machine to indicate this capability. The creator SSM can share
this capability by sending this secret secure_machine handle to
other trusted SSMs.

Since PSec is a distributed programming language, we want to
allow the programmer to be able to denote where they want to
create state machines if necessary. We introduce an optional @ ex-
tension to the new command that designates the new state machine
to be created on the same physical host as the input handle. As an
example from Civitas on lines 36-37 (Figure 2), each Ballot Box SSM
creates a corresponding Append Only Log SSM to record sensitive
votes as well as a Memory USM on the same physical host as itself.
We depict the relevant code below:

3.2 Message Sending
Rationale:We need to define multiple message sending types in
order to capture all interactions in a distributed system. First of all,
SSMs should be able to exchange trusted messages with sensitive
data with other SSMs they trust. In addition to this, they should
also be able to exchange messages from USMs as well as other
untrusted SSMs (one simple usecase being to accept input from
user systems and send back computed output). SSMs should be able
to differentiate between these interactions so that they can respond
accordingly. USMs, in general, should be able to send messages to
both USMs and SSMs.

After looking at all the possible scenarios, we decided to define
trusted sending (used to exchange messages with trusted content
between SSMs) and untrusted sending (for all other usecases). We
additionally define trusted events and untrusted events where pro-
grammers can use trusted sending to send messages encapsulated
in trusted events and untrusted sending for messages in untrusted
events. Programmers can specify different event handlers for state
machines when they receive a trusted versus an untrusted event.

Trusted Sending: Trusted sending is inferred by the compiler
based on the specified handle of the receiving machine (needs to
be secure_machine). This type of sending can only occur between
2 SSMs, and this capability is indicated by the possession of
the secure_machine handle. These messages are sent over a secure
channel and the PSec Type Checker enforces that trusted events
can only be sent using trusted sending so that their contents are
never leaked to the untrusted world. On the receiving machine’s
side, the PSec Runtime ensures that trusted events can only be
received from other trusted SSMs through secure channels.
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Untrusted Sending: Untrusted sending is inferred by the com-
piler through the machine handle type. Both SSMs and USMs can
use this command to send untrusted events with payloads to other
machines without needing any sort of capability. These mes-
sages are sent with encryption but since the messages themselves
may originate from the untrusted world, their content is untrusted.
The following code snippet shows the template for a send:

3.3 Additional Language Features
Sealing: The seal and unseal language constructs enable program-
mers to encrypt data in SSMs such that only instances of that
specific SSM are able to decrypt it. We define a new type for the
encrypted data from the seal command (sealed_data), and the com-
mand takes in a PSec value and returns the sealed data. In Civitas,
once the Ballot Box SSM receives a vote, it seals the vote and sends
it to untrusted memory. We have included the relevant code snippet
from lines 43-45 in Figure 2:

Local Authenticate: The localAuthenticate language construct
allows USMs to verify that any SSMs running on the same dis-
tributed host are actually running valid code. This is necessary to
establish a one-way trust from a USM to a particular SSM since
we already have mechanisms to establish SSM to SSM trust. This
construct is essential in the Civitas example when the Voter USM
wants to authenticate the Secure Voting Client SSM provisioned on
its system before trusting it with the confidential vote. We include
lines 57 - 62 from the code snippet in Figure 2:

4 PSec Formalisms and Guarantees
4.1 PSec Type Checker
One of the primary goals of PSec is to enable secure computation
in a simple, high-level programming language. As part of this, we
want to prevent programmers from accidentally leaking secret data.
A potential approach to achieve this involves using cryptography
or access control frameworks. However, a fundamental problem
with these approaches is that they do not prevent entities (with
legitimate access) from accidentally leaking secret data to bad actors
or provide any sort of warning to programmers. This problem can
be combated by utilizing external monitors, but it is hard for these
systems to detect potentially mutated forms of sensitive data.

PSec uses a different approach based on enforcing information
flow control (IFC) policies through static type-checking. This kind
of static analysis enables us to ensure that no secret information

is leaked and it works by augmenting the type system to include
security labels. In our system, we define two types of security labels
(High/H and Low/L) similar to other work in this field [23]. These
labels indicate that we want to maintain the confidentiality and
integrity of secret values. Essentially, we want to prevent data with
H labels from being leaked and we also want to ensure that this
data contains trusted information, rather than potentially malicious
payloads. Programmers can utilize the secure types of variables by
prefixing the type with secure_ to indicate this, and we propagate
these labels across the program during analysis.

With IFC, the PSec type checker guarantees that sensitive data
(and any mutations) remains within trusted machines and never
leaks to the untrustedworld. For example, we enforce that untrusted
events only contain L data while trusted events only contain H
labeled data (this also is necessary to guarantee the integrity of
values in the system). However, we provide Declassify and Endorse

commands for flexibility to implement real world usecases (such as
lines 81 - 86 in Figure 2 where we need to Endorse the vote before
forwarding it to ensure it will be treated securely, even though the
vote input was from a USM). One additional usage of Declassify is
to take a secure_machine and remove its capability, outputting
a non-sensitive machine handle. We require the programmers to
manually verify the usage of Declassify and Endorse operations,
but by making the usage of these commands an explicit choice, we
prevent many classes of bugs since this is a much smaller surface
to check.

In our type checker, we additionally provide a foreign function
interface where programmers can define implementations of PSec
functions in C++, provided they create a typed PSec function in-
terface. Our information flow analysis holds provided the interface
contract is met. Our experience is that this is a much smaller surface
for programmers to check for potential issues, but gives PSec the
power and flexibility to implement functions used in real world
examples in a native low-level language (e.g. the hashing function
mentioned in the OTP example in Section 6.1) .

We provide sample PSec code with comments in regards to
information flow type checking in the Appendix, in Section A.

4.2 Formalism
Definitions. We present the definitions required to describe the
formal guarantees of PSec.
(1) LetZ be the set of all machine identifiers. A machine identifier

is a pair M × N, where N is the set of natural numbers and M
is the set of names of all state machines.

(2) Let 𝑠 ∈ S be the state of a PSec state machine where S is the
set of all possible local states for any given state machine.

(3) Let ET represent the set of names of all the trusted events and
EU represent the untrusted events. Let E be ET ∪ EU .

(4) Let B represent the set of all possible values for any given
input event buffer (state machines enqueue PSec events into
the target machine’s input buffer). This buffer is a sequence of
(𝑒, 𝑣) ∈ E ×V pairs, whereV is the set of all possible payloads
for PSec events.

(5) The configuration of our system is a tuple: 𝐺 = (𝑆, 𝐵,𝐶) where
𝑆 is a partial map from Z to S, 𝐵 is a partial map from Z to
B, and 𝐶 is a partial map from M to N. Essentially, 𝑆 [𝑚,𝑛]
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represents the state of the 𝑛th instance of machine𝑚, 𝐵 [𝑚,𝑛]
represents its input buffer, and 𝐶 [𝑚] represents the number
of instances of machine type𝑚 that currently exist. A trace of
our program (similar to a trace in P [7]) is a finite sequence
𝐺0 𝑎0−−→ ...

𝑎𝑛−1−−−−→ 𝐺𝑛 for 𝑛 ∈ N such that 𝐺𝑖 𝑎𝑖−−→ 𝐺𝑖+1 for
each 𝑖 ∈ [0, 𝑛) where 𝑎 represents the information that can be
inferred from the transition.

Observational Equivalence: Two values are observationally equiv-
alent (L) if they are indistinguishable to a low-level observer [24].
For example, an observer should not be able to differentiate between
different H values, but can do so for two L values. The observational
equivalence rule for primitive values with type 𝜏 is that if 𝜏 is L,
then the values must be exactly equivalent:

𝑣1 ≈L 𝑣2 ⇔ Γ ⊢ 𝑣𝑖 : 𝜏 ∧ (𝜏 = 𝐿 ⇒ 𝑣1 = 𝑣2)

Generalizing this rule, we have the following:
For states 𝑆1, 𝑆2 (where 𝑢𝑣𝑎𝑙𝑠 returns a map of non-sensitive vari-
ables to their values in state 𝑠), all corresponding L values must be
equivalent:

𝑆1 ≈L 𝑆2 ⇔ 𝑢𝑣𝑎𝑙𝑠 (𝑆1) = 𝑢𝑣𝑎𝑙𝑠 (𝑆2)

For buffers 𝐵1, 𝐵2, all untrusted events/payloads must be equivalent:

𝐵1 ≈L 𝐵2 ⇔

𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐵1, 𝜆(𝑒1, 𝑣1) . 𝑒1 ∈ EU ) = 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐵2, 𝜆(𝑒2, 𝑣2). 𝑒2 ∈ EU )
Machine instance maps 𝐶1, 𝐶2 must be equivalent:

𝐶1 ≈L 𝐶2 ⇔ ∀𝑚 ∈ M . 𝐶1 [𝑚] = 𝐶2 [𝑚]

For configurations 𝐺1, 𝐺2:

𝐺1 ≈L 𝐺2 ⇔ (𝑆1 ≈L 𝑆2) ∧ (𝐵1 ≈L 𝐵2) ∧ (𝐶1 ≈L 𝐶2)

For traces 𝜋1, 𝜋2:

𝜋1 ≈L 𝜋2 ⇔ ∀𝑖 ∈ [0, 𝑛). 𝐺𝑖
1 ≈L 𝐺𝑖

2

Observation Function:We define an Observation function (𝑂𝑏𝑠L )
that maps transitions in our system to labels that indicate which
information is leaked to our adversary. We provide the formal oper-
ational semantics of the PSec language in Figure 7 in the Appendix.

4.3 PSec System Guarantees
The PSec Runtime and type checker allow our system to satisfy the
property of observational determinism.

Observational Determinism: Observational determinism [24]
is a property that, if satisfied, prevents adversaries from inferring
sensitive information from the execution of the program and cor-
rupting trusted values in our system.

A program satisfies the confidentiality property of observational
determinism if for every pair of traces of the system, given that
the initial configurations are observationally equivalent and the
untrusted operations performed at every step are identical, then the
traces are both observationally equivalent. In our case, we will be
using our Observation function as a way to measure the operations
performed at each step. The dual of this is to prove that adversaries
cannot corrupt trusted values in our system (we call this Trusted
Equivalence and we detail this, ≈H , and 𝑂𝑏𝑠H in the Appendix, in
Section C.2.). Assume that P is the set of all possible PSec traces

that are derived from programs that have passed our type checker.
Stated formally, we need to prove the following for our system:

∀𝜋1, 𝜋2 ∈ P, 𝑛 ∈ N

𝜋1 = 𝐺0
1

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

1 , 𝜋2 = 𝐺0
2

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

2

For confidentiality,

(𝐺0
1 ≈L 𝐺0

2) ∧ (𝑂𝑏𝑠L (𝜋1) = 𝑂𝑏𝑠L (𝜋2)) ⇒ 𝜋1 ≈L 𝜋2

For integrity,

(𝐺0
1 ≈H 𝐺0

2) ∧ (𝑂𝑏𝑠H (𝜋1) = 𝑂𝑏𝑠H (𝜋2)) ⇒ 𝜋1 ≈H 𝜋2

Theorem 4.1. If a PSec program type checks, then the program
satisfies the property of observation determinism when executed using
the PSec Runtime.

We include proofs in the Appendix, in Section C.

5 Implementation
Our PSec design relies on two assumptions: (1) the code running
within SSMs is trusted (i.e. does not leak sensitive information and
is certified) and (2) the adversaries cannot read sensitive informa-
tion contained within SSMs. The first assumption is partly achieved
through the language since SSMs are implemented using PSec and
hence satisfy the desired IFC properties statically. To ensure that
these static guarantees hold at runtime and to satisfy both assump-
tions, we provide a runtime that implements various constructs
described in Section 3 and leverages Intel SGX to ensure confiden-
tiality of execution and integrity of code through attestation. In
this section, we briefly describe the implementation of the PSec
Runtime.

5.1 System Architecture
Our runtime consists of two parts: the PSec Secure Runtime, and

the PSec Untrusted Runtime. The PSec Secure Runtime is responsi-
ble for executing a SSM inside an enclave and implements all the
necessary functionalities for our constructs. The PSec Untrusted
Runtime is in charge of USMs and additionally ferries messages to
the network for all of the state machines.

In our system, we have multiple distributed host machines and
a trusted Key Provisioning Server (KPS). The overall architecture
is shown in Figure 3. Each distributed machine can host multiple
SSMs (one per enclave) and USMs. The KPS stores all precomputed
enclave measurements and serves as an intermediary to establish
trust. Additionally, the public KPS key is baked into all enclaves.
All network connections between any machines in the system use
openSSL TLS connections, and the KPS also serves as a certificate
authority for all valid host machines. We assume the KPS has a
correct implementation and is deployed on a trusted server. As we
will demonstrate, the KPS serves as the root of trust for all the SSMs
in our system. It is important to note that the KPS is always queried
through our PSec runtime and is only strictly utilized during ma-
chine creation time. For SSMs, this means that any interactions to
the KPS are handled by the PSec Secure Runtime which cannot be
maliciously tampered, a fact that ensures the security of the overall
system. Note that in our current implementation there is a single
KPS server and hence a single point of failure - this can easily be
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addressed by making the KPS as a fault-tolerant distributed ser-
vice that maintains a database of all the information required to
authenticate new enclaves.

Figure 3: PSec System Architecture

In general, we assume that the first SSM in our system is created
from a secure context. This means that when a USM creates the
first SSM in order to kickstart the system, the USM assumes that the
SSM is securely created even though the untrusted create protocol is
used. This assumption is necessary to bootstrap trust in our system
and can be made practical by having the initial SSM and USM be
hosted by the same trusted distributed host. Once the first SSM is
created, it can create additional trusted SSMs (which can reside on
untrusted hosts) and bootstrap the trusted distributed system.

5.2 Definitions for Protocols
We provide necessary definitions that we will use in the next section
to describe the implementations of our various protocols.

Identity: Every state machine has an associated unique Iden-
tity, an asymmetric key pair. When we say that a state machine
has authenticated using its Identity, this involves a signature over
the private Identity key. When we refer to Identity (without
explicitly stating private key), we mean the Identity public key.

Capability: Every SSM has a Capability (an asymmetric key
pair) associated with it. Anyone who possesses the Capability
of an SSM gains the ability to send trusted events to that SSM.
Capabilities must never leak into the untrusted world and must
stay within enclaves since they are secrets. When we refer to the
Capability, we mean the entire public/private key pair.

Secure Sigma* Channel:We use Secure Sigma* to establish
secure channels between enclaves and the KPS. This channel is
created using Intel SGX’s version of the Sigma Protocol (version
of authenticated Diffie-Hellman provided by SGX SDK). In this
protocol, the enclave remote attests itself to the KPS. It proves that
it is legitimate and running PSec, and then bootstraps a secure
channel. The KPS authenticates using its private signing key while
the enclave authenticates using Intel EPID.

5.3 Trusted Create Protocol
Recall that the trusted create protocol is invoked when a SSM wants
to create a new SSM. We denote the newly created SSM as the
child SSM and the original SSM as the parent SSM. Upon successful
completion, this protocol returns a secure_machine typed handle to

the parent SSM. We outline the protocol in Figure 4. The protocol
is divided into 2 parts:

Parent SSM - createMachineRequest(): When the new com-
mand is invoked on a SSM type, the parent SSM calls the cre-
ateMachineRequestmethod of the PSec Secure Runtime. It passes
in its Identity as well as the type of SSM it wishes to create. If
the @ command is not used, this method first makes an OCALL to
the PSec Untrusted Runtime to make a network request (using
TLS) to the KPS to determine the IP address/port of a valid dis-
tributed host for the child SSM. After receiving this information,
the createMachineRequest method makes another OCALL to for-
ward the machine creation request along with the parent SSM’s
Identity to this valid distributed host (again using TLS). The ex-
pected response from this request is the Identity of the newly
created child SSM. After receiving this response, the parent enclave
establishes a Secure Sigma* channel with the KPS. It then sends
in (parent SSM Identity, child SSM Identity, Type of SSM To
Create) and receives the child SSM Capability. The parent enclave
then encapsulates the child SSM’s Capability key, Identity, and
network address information in a secure_machine handle and re-
turns it back to the programmer in the PSec code.

Child SSM - createMachineAPI():When a distributed host re-
ceives a network request, the PSecUntrusted Runtime processes the
request. In the case of a SSM creation request, it receives the parent
SSM Identity and the type of SSM that needs to be created. It goes
ahead and creates a new enclave on the host machine and then
calls the createMachineAPI PSec Secure Runtime method. This
initializes a new PSec process inside the enclave, creates the child
SSM, and generates an Identity for it. After this initial setup, the
enclave needs to establish a Capability for this SSM so that it can
receive trusted events. The child enclave does this by establishing a
Secure Sigma* channel with the KPS and sending it (parent SSM
Identity, child SSM Identity, Type of SSM To Create). The KPS
stores (parent SSM Identity, child SSM Identity, Type of SSM To
Create) -> child SSM Capability, and sends the newly generated
Capability back to the child SSM. Once the child enclave receives
the Capability, it makes an OCALL to the PSec Untrusted Runtime
in order to send the child SSM Identity back to the parent enclave.

Guarantees: The trusted create protocol gives us many guar-
antees against even our most privileged attacker from Section 2.4.
First of all, if the parent SSM successfully retrieves the Capability
from the KPS, it receives a guarantee that the child SSM was se-
curely created since the KPS validates the child enclave through
the Secure Sigma* protocol before generating this Capability.
The child SSM also receives the guarantee that only its parent SSM
receives its Capability due to KPS validation.

This protocol has limitations, but these limitations are the same
limitations that are inherent to enclaves. This protocol is vulnera-
ble to a DoS attack by any of the distributed host machines since
they can drop messages, modify the requested type of SSM to cre-
ate, or modify the child SSM Identity that is returned. However,
in this case, the parent enclave will not be able to retrieve the
Capability from the KPS and will realize that the trusted create
call has failed. The KPS’s final message to the child enclave con-
taining the Capability of the child machine can be blocked (DoS),
preventing the child SSM from ever receiving trusted events. It is
important to note that in all of these cases, this protocol does not
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Figure 4: Trusted Create Protocol

leak any secret data and the enclaves are generally aware of when
failures/malicious behaviors occur.

5.4 Untrusted Create Protocol
The untrusted create protocol is invoked during all other machine
creation cases. Upon completion, this protocol returns a machine

handle that contains the Identity as well as network address infor-
mation of the newly created child. This protocol follows a similar
flow to the trusted create protocol, but is a “best-effort" protocol
that does not involve Capability generation nor KPS attestation.

Guarantees: The untrusted create protocol gives us fewer guar-
antees as compared to the trusted create protocol. Since this protocol
leverages TLS, it is resistant to the first 2 levels of adversaries (pas-
sive network observers and man-in-the-middle attackers), but can
be subverted much more easily by privileged adversaries. Any cor-
ruption or subversion in the receiving distributed host machine
may cause the wrong machine to be spawned (or no machine at
all!), and there is no way to verify this information.

5.5 Trusted Send Protocol
The trusted send protocol is used when an SSM wants to send a
trusted event containing potentially sensitive data to another SSM.
We denote the first SSM as the sending SSM and the second SSM
as the receiving SSM. The sending SSM must have the Capability
and Identity of the receiving SSM (all encapsulated in the secure_-
machine handle). When the sending SSM invokes the send command
with a secure_machine handle, the PSec Secure Runtime generates
a session key, parses the relevant information from the secure_-

machine handle, and sends a TLS network request to the receiving
SSM with the session key encrypted by the receiving SSM’s Iden-
tity. As a quick overview, it then essentially serializes the PSec
Event payload, signs over this with the receiving SSM’s private
Capability key, appends these two parts together, and sends this
entire chunk encrypted with the session key over. The session key
is reused on subsequent connections and for brevity, we are not
outlining our use of nonces, IVs, and MACs. On a high level, the
sending SSM authenticates using the Capability while the receiv-
ing SSM authenticates using its Identity. We have this additional
layer of protection in addition to TLS so that messages are only

readable by the receiving SSM and not by the host. One item to
note is that we could have implemented Capabilities as shared
symmetric keys and provided the same authentication properties by
utilizing MACs. Although this does not provide additional security
guarantees, it could provide potential performance improvements
and we leave this as a future implementation improvement.

Guarantees: This protocol guarantees confidentiality and in-
tegrity of the data being sent against even privileged attackers. We
guarantee that trusted events are never leaked to the untrusted
world through this sending process and that they are sent by a
trusted SSM to the intended SSM. We do note that adversaries may
be able to determine the event type or message length, but the
payload will always remains a secret. As before, this protocol is
vulnerable to DoS attacks because messages can be dropped.

5.6 Untrusted Send Protocol
Invoking the send command with a machine handle uses our un-
trusted send protocol. This is very similar to the trusted send proto-
col, except this method establishes a secure channel by using the
Identity of both machines as a means of authentication. After a se-
cure channel is created, the untrusted event is sent over and passed
to the receiving machine by the PSec Untrusted Runtime. Once
again, the connection between the two distributed host machines
uses TLS as an additional layer of protection.

Guarantees: Since these messages are potentially originating
from the untrusted world, this protocol does not validate whether
machines are running valid PSec code. As a result, privileged ad-
versaries may be able to corrupt one, or both, parties involved and
steal their keys to forge or decrypt these untrusted messages. As-
suming that such privileged adversaries have not compromised
either party, this protocol guarantees confidentiality and integrity
of the message payload being sent. In particular, this protocol pre-
vents man-in-the-middle network attackers from learning anything
useful about the data, and once again, is vulnerable to DoS attacks.

5.7 Seal and Local Authenticate
The implementations of the seal/unseal and the localAuthenticate
commands are relatively straightforward. For seal/unseal, we lever-
age Intel SGX’s sealing capability provided by the native SDK. For
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localAuthenticate, we obtain an on-demand measurement of the
target enclave and compare it to an expected measurement.

5.8 Limitations
Currently, Intel SGX requires enclaves to be registered with the
Intel IAS Server beforehand so that one of the signatures during
the remote attestation exchange can be verified. In our current
implementation, PSec code written by the programmer is compiled
as part of the enclave, which results in a different enclave measure-
ment for different PSec programs. This makes it not possible to
pre-register our enclaves with the IAS and as a result, we skip this
registration and signature verification process and leave automat-
ing it as future work. We additionally use Intel’s provided sample
code for remote attestation and it is important to note that Intel
states that this code is not a production level implementation.

In our current implementation, our hosts can only handle one net-
work request at a time. We have not implemented multi-threading
and PSec programs proceed in an overall sequential fashion where
state machines execute in a predefined order and requests are sent
after previous requests complete. There is one effective thread ex-
ecuting in the overall system at any given moment in time. We
would also like to implement more robust error handling, and leave
these implementation improvements as future work.

Finally, we acknowledge that since we provide a foreign function
interface (similar to the Rust language) where programmers can
define implementations of PSec functions in C++ for added flexibil-
ity, bugs that exist in this surface can cause possible problems. One
possible intermediate solution might be automate the verification
of the foreign function code. We leave this for future work.

6 Evaluation
We evaluate the PSec framework along two dimensions:
Expressiveness.We implement real-world applications using PSec
to demonstrate its expressiveness and ease of programming.
Performance.We compare the performance of systems built using
PSec against the insecure baseline systems programmed in P. This
presents the performance overhead of making the system secure,
which we show is not prohibitive for longer running applications.

6.1 Examples
We evaluate the PSec framework by implementing the following
examples taken from related work [4, 12, 21].

One Time Passcode : One Time Passcode (OTP) services are
often used in 2-Factor Authentication schemes. Many secure imple-
mentations rely on having users supply their password along with
an OTP code computed by a tamper resistant hardware token (usu-
ally a function of a shared secret and current time) to authenticate.
Although these implementations provide strong security guaran-
tees, distributing these hardware tokens is often inconvenient in
practice. Recent schemes such as the one proposed by Hoekstra
et al. [11] replace these physical tokens with Intel SGX (already
present in modern computers with Intel CPUs). Intel SGX provides
similar security guarantees because after an enclave is provisioned,
attackers cannot easily conduct remote attacks and need access to
the same physical machine as the user to generate valid OTP codes.

In order to test PSec, we implement a version of a SGX-OTP ser-
vice, specifically a Bank 2-Factor Authentication example (inspired
from the Moat paper [21]). In our system, we have a Bank SSM, a
Client Web Browser USM, and a Client SSM. In the setup phase, the
Client Web Browser USM authenticates with the Bank SSM and re-
quests to enable 2-Factor. The Bank SSM then creates a Client SSM
on the same host as the Client Web Browser and provisions it with a
master secret (marked with secure). In the sign-in phase, the Client
Web Browser sends a request to the Client SSM with its credentials
and receives an OTP code in return. It is important to note that this
OTP code is computed by hashing the input credential with the
master secret, so a code is generated regardless of the correctness
of the input credential. We implement this hash function in C++
using PSec’s foreign function interface, and we manually check to
make sure the implementation satisfies the interface contract to
ensure the information flow guarantees. After receiving the OTP
code, the Client Web Browser forwards this code along with its
credentials to the Bank SSM. The Bank SSM sends back either Auth
Success or Auth Failure and the client is either successfully logged
in or redirected to login again.

Secure Email Processing: Spam filtering services are increas-
ingly important in the modern world due to a high proliferation of
spam. We implement a version of a secure spam filtering service in
PSec where the user can outsource email filtering and spam detec-
tion to a third party service while keeping the email text private and
confidential. We create an Email User SSM, an Email User USM, and
a Secure Spam Filter SSM. The Secure Spam Filter SSM provisions
an Email User SSM on the same host machine as the requesting
Email User USM. Then, the Email User USM sends the email text to
the Email User SSM, which sends it to the Secure Spam Filter SSM
for processing and returns SPAM/NOT SPAM. We mark the email
text as a secure field to protect it from being leaked.

Health Analysis: Companies such as 23andMe provide health
reports for users upon receiving medical information. However,
medical data is inherently sensitive and we want to provide guar-
antees that this data will not be leaked. This guarantee is made
harder since the company itself may be relying on third party cloud
services (such as AWS) for computationally expensive operations.
For our PSec implementation, we designate a User USM, a User
SSM, a Secure Health Analyzer SSM (23andMe), and an AWS ML
Host SSM. The User USM sends a request to the Secure Health Ana-
lyzer SSM and receives the handle of a User SSM newly provisioned
on its system. It then sends the relevant medical data to the User
SSM, which securely forwards it to the Secure Health Analyzer
SSM. The Secure Health Analyzer then creates an instance of the
AWS ML Host SSM, sends it the medical data, and returns the diag-
nosis (TRUE/FALSE). We mark the medical data as a secure field
to protect it from being leaked. As part of our implementation, we
do not code the health analysis logic since it is application-specific,
but rather program the overall flow to show that PSec can express
this type of distributed service.

Note that while the Secure Email Processing and Health Analysis
examples were inspired from the Ryoan paper [12], our implemen-
tation provides slightly weaker guarantees. While the Ryoan secure
sandbox is constructed to provide guarantees against a malicious
application developer, we assume a trusted programmer writing
potentially buggy code. This is a realistic assumption and enables us
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to be more flexible in our design while providing strong guarantees
against malicious adversaries.

Secure Voting:We provide a description of the Civitas Secure
Voting System in Section 2.2. We implement both the voting phase
and the vote counting phase and and assume voter registration
is through a physical registration teller, as recommended by the
Civitas paper. We mark votes as a secure field to protect them.
Our implementation provides many of the same guarantees as the
original Civitas paper, but we provide a weaker coercion resistance
property. Since the original Civitas paper assumes the existence
of anonymous channels (not possible in PSec since we do not use
mesh networks like TOR), we would not be able to provide these
strong guarantees in any case. We guarantee a weaker form of
coercion resistance where the voter can supply a fake credential
to a coercer but still submit a vote with their real credentials. In
this case, the coercer would submit an invalid vote, but would not
realize any wrongdoing until election results are finally released.
At this point, it is too late for the coercer to change the outcome.
Ideally, we would like to prevent the coercer from learning this
information.

6.2 Expressiveness
In Table 1, we describe the number of lines of code written for
implementing all the examples using PSec.

Application OTP Email Health Civitas
PSec App [PSec] 217 109 120 426

PSec Foreign Fn [C/C++] 35 - - 14
PSec Library Stubs [PSec] 21
PSec Runtime [C/C++] 18,883
PSec Type Checker [C#] 9,330

Table 1: Lines of Code

The PSec App row represents the lines of code written in PSec
to implement the high-level protocol logic of each application. This
demonstrates the power of using our abstractions; programmers can
implement secure distributed applications in a few hundred lines
of PSec code without having to worry about the low-level details.
The majority of the rows consist of one-time implementations
(such as compiler extensions and supporting libraries) as a part of
creating the PSec framework. All the low-level code that interacts
with enclaves and implements cryptographic security primitives is
shared across the applications and abstracted from the programmer.

6.3 Performance
We present our performance results on an initial implementation
of our system. We deploy our code on Azure Confidential Compute
instances running on 3.7GHz Intel Xeon E-2176G processors with
SGX on Ubuntu 18.04. We chose to rent 2 Standard DC2s_v2s (2
vcpus, 8 GiB memory) in the US East region connected to the same
virtual network. All SGX-code is running in HARDWARE mode.

Benchmark Overhead:We conducted experiments to bench-
mark the overhead of PSec versus a distributed version of P (using
our untrusted send and untrusted create constructs). In Figure 5, we
present the overall time for: (1) creating a SSM as compared to a
P USM, and (2) performing 100 trusted sends as compared to 100 P

Figure 5: Granular Performance Metrics

untrusted sends. We conduct each test 100 times and indicate the
standard deviation in the graph. Creating a SSM in PSec is ∼15x
slower than creating an USM in P, and this overhead is mainly
because the SSM process creation involves several steps such as
provisioning an enclave, communicating with the KPS, and the en-
tire attestation procedure. Note that long running systems involve
creating a finite number of these state machines, so this overhead
is a one-time cost paid during the creation process. The overhead
for trusted sends through SSMs is a much smaller ∼1.2x. Although
the creation overhead may seem prohibitively high, we believe that
in real-world systems, the usage pattern will tend to revolve more
around send operations rather than machine creations.

To validate this claim, we compared overall application level tim-
ings of our PSec Civitas and OTP examples with their insecure P
counterparts. For Civitas, we measure the time fromwhen the client
submits the vote to when the election’s final results are retrieved.
For OTP, we measure the time fromwhen the client sends the initial
request to the bank, to successful authentication. To showcase the
scenarios where the applications are longer running, we have the
client submit multiple Civitas votes and OTP code generations/au-
thentications. We made each application perform 1 to 15 operations,
average over several runs, and present the results in Figure 6. The
overall application overhead is ∼3x in just 15 operations, and is
trending towards the theoretical minimum of ∼1.2x (overhead of
trusted over untrusted sends). Note that the OTP example has a
bigger initial performance discrepancy since it is a smaller example
and the high startup overhead of provisioning a new enclave takes
disproportionate time. We strongly believe that for most real-world
applications that perform many operations over their lifetime, this
performance overhead is encouraging for the security guarantees
provided by using PSec.

Overall, given the strong security guarantees provided by PSec
with the ease of programming at a high level of abstraction, we
believe this to be an acceptable performance overhead. Further-
more, this is partly implementation driven. For example, instead
of dynamically creating and provisioning new enclaves, we can
create a pool of validated enclaves beforehand or reuse enclaves
with SSMs in a terminal state. Additionally, we can possibly look
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Figure 6: Performance Overhead Graph

into using switchless [22] calls to make enclave context changes
less expensive. Changes like these would bring the performance
overhead closer to that of native P programs.

7 Conclusion
In this paper, we presented PSec, a state-machine based program-
ming framework for implementing secure distributed systems. To
achieve this, we augmented the P language with an information
flow control type system and added language constructs to enable
programmers to write secure distributed systems with formal secu-
rity guarantees, without having to worry about security protocols
and their low-level implementations. To ensure that the security
guarantees provided by the PSec programming language hold at
runtime, we leveraged enclaves and constructed security protocols
that take advantage of these trusted execution environments. We
demonstrated the efficacy of the PSec framework by implementing
real-world applications, and our results show that our language is
sufficiently expressive and has an acceptable performance overhead
for longer running systems (measured to be ∼3x, but with a possible
minimum of ∼1.2x).

8 Future Work
We outlined the limitations of our language implementation in Sec-
tion 5.8 and leave it for future work. Another potential addition
to our PSec Runtime implementation would be to replace our cur-
rent dependence on Intel IAS with attestation frameworks such
as DCAP [17] or OPERA [1]. This would eliminate the need to
pre-register our enclaves with Intel and would enable program-
mers to use PSec directly. However, DCAP requires using newer
Intel chips with Flexible Launch Control support as well as us-
ing a DCAP-compatible version of the SGX driver, and OPERA is
currently described as a prototype implementation. Porting over
to these systems is non-trivial, but is a definite potential avenue
of future work. A more ambitious future direction for the PSec
language would be to automatically infer secure_machine anno-
tations on state machines. In this approach, programmers would
simply designate certain variables as secure. The compiler will en-
sure that these variables are not stored in untrusted memory by

appropriately marking machines that handle this information as
secure_machine and potentially creating intermediate secure envi-
ronments as needed. This approach would enable an even lesser
annotation overhead for the programmer since the compiler will
learn the required annotations to ensure that secrets remain within
trusted environments.
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A PSec Information Flow Typing Example

B Operational Semantics
We build on top of the operational semantics of the P
Programming language, presented in [7].

B.1 Additional Notation
In addition to notation in Section 4.2, we denote additional
notation below:
(1) Let M represent the set of names of all the state machines,

MT represent for SSMs, andMU represent for USMs
(2) Let H be the set of all machine handles (used to send events to

state machines), which isM × N × X, where N is the set of
natural numbers and X ∈ {0, 1}. LetHT represent the set of
trusted machine handles (contain trusted event capabilities)
and be represented as M × N × 1. Let HU represent the set of
untrusted machine handles and be represented asM × N × 0

(3) Let VT represent the set of all possible payloads that may be
encapsulated in a PSec trusted event andVU represent those
in a PSec untrusted event. LetV be VT ∪VU

We define various transition relations and functions below:
(1) 𝐿𝑜𝑐𝑎𝑙 ⊆ S ×H × S ×H represents the various internal

transitions of a state machine. (𝑠, 𝑖𝑑, 𝑠 ′, 𝑖𝑑 ′) ∈ 𝐿𝑜𝑐𝑎𝑙 (𝑚) means
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that the machine𝑚 transitions from local state 𝑠 to 𝑠 ′ and can
model the movement of handles between these local states

(2) 𝐸𝑛𝑞 ⊆ S ×H × E ×V × S represents message sending from
one machine to another. (𝑠, 𝑖𝑑, 𝑒, 𝑣, 𝑠 ′) ∈ 𝐸𝑛𝑞(𝑚𝑠 ) means that
the sending machine𝑚𝑠 changes local state from 𝑠 to 𝑠 ′ and
event 𝑒 with payload 𝑣 is sent to machine with handle 𝑖𝑑

(3) 𝑅𝑒𝑚 ⊆ S × B × N × S represents a state machine dequeuing
and handling an event from its input buffer. (𝑠, 𝑏, 𝑛, 𝑠 ′) ∈
𝑅𝑒𝑚(𝑚) means that the machine𝑚 dequeues the 𝑛th event
from its input buffer 𝑏 and changes local state from 𝑠 to 𝑠 ′

(4) 𝑁𝑒𝑤 ⊆ S ×M × S represents new state machine creation.
(𝑠,𝑚𝑐 , 𝑠

′) ∈ 𝑁𝑒𝑤 (𝑚𝑝 ) means that the parent machine𝑚𝑝

moves local state from 𝑠 to 𝑠 ′ after creating a child machine𝑚𝑐

(5) We define a function 𝑢𝑖𝑑𝑠 such that 𝑢𝑖𝑑𝑠 (𝑠) is the set of all
untrusted machine handles embedded in state 𝑠 and 𝑢𝑖𝑑𝑠 (𝑣) is
the same for value 𝑣 . We define 𝑡𝑖𝑑𝑠 similarly for trusted
machine handles. 𝑖𝑑𝑠 is a function that is 𝑢𝑖𝑑𝑠 ∪ 𝑡𝑖𝑑𝑠

(6) We define a function 𝑢𝑣𝑎𝑙𝑠 that returns a map of non-sensitive
variables to their values in state 𝑠 . We define 𝑡𝑣𝑎𝑙𝑠 similarly for
secret variables. 𝑣𝑎𝑙𝑠 maps all variables to their values in state 𝑠

(7) We define a helper function 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐴𝑙𝑙 (𝐴, 𝐵) that returns true
if map 𝐴 contains all key value pairs in map 𝐵

(8) We define a function 𝐼𝐹𝐴(𝑠, 𝑠 ′) that returns true if 𝑠 to 𝑠 ′
represents a valid transition for a state machine given IFC
rules. We have 3 possible valid transitions: state remains the
same, or either the untrusted state or the trusted state
increases. 𝐼𝐹𝐴(𝑠, 𝑠 ′) returns true if
(𝑢𝑣𝑎𝑙𝑠 (𝑠) = 𝑢𝑣𝑎𝑙𝑠 (𝑠 ′) ∧ 𝑡𝑣𝑎𝑙𝑠 (𝑠) = 𝑡𝑣𝑎𝑙𝑠 (𝑠 ′)) or
(𝑢𝑣𝑎𝑙𝑠 (𝑠) = 𝑢𝑣𝑎𝑙𝑠 (𝑠 ′) ∧ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐴𝑙𝑙 (𝑡𝑣𝑎𝑙𝑠 (𝑠 ′), 𝑡𝑣𝑎𝑙𝑠 (𝑠))) or
(𝑡𝑣𝑎𝑙𝑠 (𝑠) = 𝑡𝑣𝑎𝑙𝑠 (𝑠 ′) ∧ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐴𝑙𝑙 (𝑢𝑣𝑎𝑙𝑠 (𝑠 ′), 𝑢𝑣𝑎𝑙𝑠 (𝑠)))

Machine Handles Cannot be Created “Out of Thin Air"We
need to formalize the concept that these machine handles cannot
be created “out of thin air" [7] and must be present in local state
before they can be used. State machines can get access to these
handles by either creating a new machine (𝑁𝑒𝑤 ) or by receiving
the handle from another state machine and dequeuing the event
(𝑅𝑒𝑚). We formalize this as follows:
∀𝑚 ∈ M, 𝑖𝑑, 𝑖𝑑 ′ ∈ H , 𝑠, 𝑠 ′ ∈ S, 𝑒 ∈ E, 𝑣 ∈ V, 𝑛 ∈ N, 𝑏 ∈ B
(1) (𝑠, 𝑖𝑑, 𝑠 ′, 𝑖𝑑 ′) ∈ 𝐿𝑜𝑐𝑎𝑙 (𝑚) ⇒ 𝑖𝑑𝑠 (𝑠 ′) ∪ 𝑖𝑑 ′ ⊆ 𝑖𝑑𝑠 (𝑠) ∪ {𝑖𝑑}
(2) (𝑠, 𝑏, 𝑛, 𝑠 ′) ∈ 𝑅𝑒𝑚(𝑚) ⇒ 𝑖𝑑𝑠 (𝑠 ′) ⊆ 𝑖𝑑𝑠 (𝑠) ∪ {𝑖𝑑𝑠 (𝑣) | ∃𝑒.𝑏 [𝑛] =

(𝑒, 𝑣)}
(3) (𝑠, 𝑖𝑑, 𝑒, 𝑣, 𝑠 ′) ∈ 𝐸𝑛𝑞(𝑚) ⇒ 𝑖𝑑𝑠 (𝑣) ∪ 𝑖𝑑𝑠 (𝑠 ′) ⊆ 𝑖𝑑𝑠 (𝑠)
(4) (𝑠,𝑚′, 𝑠 ′) ∈ 𝑁𝑒𝑤 (𝑚) ⇒ 𝑖𝑑𝑠 (𝑠 ′) ⊆ 𝑖𝑑𝑠 (𝑠)
Propagation of Secret State In addition to this, we need to make
sure that local state flows correctly propagate sensitive labels and
account for transitions between secret and non-sensitive state. We
formalize the following with the assumption our information flow
type system guarantees certain properties:
∀𝑚 ∈ M, 𝑖𝑑, 𝑖𝑑 ′ ∈ H , 𝑠, 𝑠 ′ ∈ S, 𝑒 ∈ E, 𝑣 ∈ V, 𝑛 ∈ N, 𝑏 ∈ B
(1) (𝑠, 𝑖𝑑, 𝑠 ′, 𝑖𝑑 ′) ∈ 𝐿𝑜𝑐𝑎𝑙 (𝑚) ⇒ 𝐼𝐹𝐴(𝑠, 𝑠 ′)
(2) (𝑠, 𝑏, 𝑛, 𝑠 ′) ∈ 𝑅𝑒𝑚(𝑚) ⇒

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐴𝑙𝑙 (𝑣𝑎𝑙𝑠 (𝑠 ′), 𝑣𝑎𝑙𝑠 (𝑠) .𝑝𝑢𝑡 ( (𝑥, 𝑣) | ∃𝑒.𝑏 [𝑛] = (𝑒, 𝑣)))
where x is defined to be a new variable

(3) (𝑠,𝑚′, 𝑠 ′) ∈ 𝑁𝑒𝑤 (𝑚) ⇒ 𝐼𝐹𝐴(𝑠, 𝑠 ′)

Setup The state of a state machine is represented as
(𝑠, 𝑖𝑑) ∈ (S,H) where 𝑠 is the local state of the machine, and 𝑖𝑑 is
a placeholders used to store the target of a send command or the
handle of a newly created machine. As stated earlier in Section 4.2,
the configuration of our system is the following tuple: (S, B, C).

B.2 Rules
We depict all of the rules in Figure 7. The labels on the transitions
indicate the information observable by an adversary.
Internal Rules These rules represent the internal state
transitions of the state machines. For the Local Transition, an
observer is assumed to be able to infer the new untrusted state
from this transition. For the Dequeue Event transition, an observer
is assumed to be able to infer the new untrusted state from this
transition as well as the content of any untrusted event that is
being processed. Recall that dequeuing an event can add a handle
to the current machine’s local state (if another machine has sent it).
Creation Rules In the untrusted create rule, we have a parent
state machine (denoted with subscript 𝑝) creating a child state
machine (subscript 𝑐), and both these state machines must be SSMs
in the trusted create rule. The parent machine will receive the
handle of the child machine in both of these cases, and an outside
observer can see which child machine is created as well as which
machine sent the creation request.
Sending Rules In the trusted send rule, we have a sending SSM
(subscript 𝑠) sending a trusted event to a receiving SSM (subscript
𝑟 ) by using its trusted handle, and we have a similar action in the
untrusted send rule (with an untrusted event and untrusted handle).
After executing this command, the sending machine transitions to
its next state and the receiving machine enqueues this event in its
input buffer. For a trusted send, an outside observer can infer the
type of event that was sent (although they cannot infer the
contents of the message payload itself) as well as which parties the
message is being exchanged between. In contrast, for an untrusted
send, an outside observer can potentially view the message
payload, event type, as well as which parties the message is being
exchanged between.

C Observational Determinism Security Proofs
In this section, we want to formally prove Theorem 4.1, which can
be divided into confidentiality and integrity components.

C.1 PSec Confidentiality Proof
We need to prove the following for our system:

∀𝜋1, 𝜋2 ∈ P, 𝑛 ∈ N, 𝜋1 = 𝐺0
1

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

1 , 𝜋2 = 𝐺0
2

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

2 .

(𝐺0
1 ≈L 𝐺0

2) ∧ (𝑂𝑏𝑠L (𝜋1) = 𝑂𝑏𝑠L (𝜋2)) ⇒ 𝜋1 ≈L 𝜋2

We can prove this via induction and then a proof by cases.

Base Case 𝐺0
1 ≈L 𝐺0

2

Inductive Case Assume that there exists a 𝑘 such that 𝐺𝑘
1 ≈L 𝐺𝑘

2

Inductive Step We need to prove that if
𝑂𝑏𝑠L (𝐺𝑘

1 ,𝐺
𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ), then 𝐺𝑘+1

1 ≈L 𝐺𝑘+1
2 . There
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Local

𝑚 ∈ M 𝑛 ∈ N
𝑆 [𝑚,𝑛] = (𝑠, 𝑖𝑑) (𝑠, 𝑖𝑑, 𝑠 ′, 𝑖𝑑 ′) ∈ 𝐿𝑜𝑐𝑎𝑙 (𝑚)

(𝑆, 𝐵,𝐶)
𝑢𝑣𝑎𝑙𝑠 (𝑠′)
−−−−−−−−→ (𝑆 [(𝑚,𝑛) ↦→ (𝑠 ′, 𝑖𝑑 ′)], 𝐵, 𝐶)

Dequeue

𝑚 ∈ M 𝑛, 𝑝𝑜𝑠 ∈ N 𝑆 [𝑚,𝑛] = (𝑠, 𝑖𝑑) 𝐵 [𝑚,𝑛] = 𝑏

(𝑠, 𝑏, 𝑝𝑜𝑠, 𝑠 ′) ∈ 𝑅𝑒𝑚(𝑚) 𝑏 ′ = 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑏, 𝑝𝑜𝑠) (𝑒, 𝑣) = 𝑏

(𝑆, 𝐵,𝐶)
𝑢𝑣𝑎𝑙𝑠 (𝑠′),𝑒, (𝑣 |𝑒∈EU )
−−−−−−−−−−−−−−−−−−−→ (𝑆 [(𝑚,𝑛) ↦→ (𝑠 ′, 𝑖𝑑)], 𝐵 [(𝑚,𝑛) ↦→ 𝑏 ′], 𝐶)

Trusted Create
𝑚𝑝 ,𝑚𝑐 ∈ MT 𝑛𝑝 , 𝑛𝑐 ∈ N 𝑡𝑖𝑑𝑐 = (𝑚𝑐 , 𝑛𝑐 , 1) 𝑢𝑖𝑑𝑐 = (𝑚𝑐 , 𝑛𝑐 , 0) 𝑆 [𝑚𝑝 , 𝑛𝑝 ] = (𝑠𝑝 , _) (𝑠𝑝 ,𝑚𝑐 , 𝑠

′
𝑝 ) ∈ 𝑁𝑒𝑤 (𝑚𝑝 ) 𝑛𝑐 = 𝐶 [𝑚𝑐 ]

(𝑆, 𝐵,𝐶)
(𝑚𝑝 ,𝑛𝑝 ),(𝑚𝑐 ,𝑛𝑐 )
−−−−−−−−−−−−−−→ (𝑆 [(𝑚𝑝 , 𝑛𝑝 ) ↦→ (𝑠 ′𝑝 , 𝑡𝑖𝑑𝑐 ), (𝑚𝑐 , 𝑛𝑐 ) ↦→ (𝑠0, {𝑡𝑖𝑑𝑐 , 𝑢𝑖𝑑𝑐 })], 𝐵 [(𝑚𝑐 , 𝑛𝑐 ) ↦→ 𝑏0], 𝐶 [𝑚𝑐 ↦→ 𝑛𝑐 + 1])

Untrusted Create SSM

𝑚𝑝 ,𝑚𝑐 ∈ M (𝑚𝑝 ∈ MU ∧𝑚𝑐 ∈ MT ) 𝑛𝑝 , 𝑛𝑐 ∈ N
𝑡𝑖𝑑𝑐 = (𝑚𝑐 , 𝑛𝑐 , 1) 𝑢𝑖𝑑𝑐 = (𝑚𝑐 , 𝑛𝑐 , 0) 𝑆 [𝑚𝑝 , 𝑛𝑝 ] = (𝑠𝑝 , _) (𝑠𝑝 ,𝑚𝑐 , 𝑠

′
𝑝 ) ∈ 𝑁𝑒𝑤 (𝑚𝑝 ) 𝑛𝑐 = 𝐶 [𝑚𝑐 ]

(𝑆, 𝐵,𝐶)
(𝑚𝑝 ,𝑛𝑝 ),(𝑚𝑐 ,𝑛𝑐 )
−−−−−−−−−−−−−−→ (𝑆 [(𝑚𝑝 , 𝑛𝑝 ) ↦→ (𝑠 ′𝑝 , 𝑢𝑖𝑑𝑐 ), (𝑚𝑐 , 𝑛𝑐 ) ↦→ (𝑠0, {𝑡𝑖𝑑𝑐 , 𝑢𝑖𝑑𝑐 })], 𝐵 [(𝑚𝑐 , 𝑛𝑐 ) ↦→ 𝑏0], 𝐶 [𝑚𝑐 ↦→ 𝑛𝑐 + 1])

Untrusted Create USM
𝑚𝑝 ,𝑚𝑐 ∈ M 𝑚𝑐 ∈ MU 𝑛𝑝 , 𝑛𝑐 ∈ N 𝑢𝑖𝑑𝑐 = (𝑚𝑐 , 𝑛𝑐 , 0) 𝑆 [𝑚𝑝 , 𝑛𝑝 ] = (𝑠𝑝 , _) (𝑠𝑝 ,𝑚𝑐 , 𝑠

′
𝑝 ) ∈ 𝑁𝑒𝑤 (𝑚𝑝 ) 𝑛𝑐 = 𝐶 [𝑚𝑐 ]

(𝑆, 𝐵,𝐶)
(𝑚𝑝 ,𝑛𝑝 ),(𝑚𝑐 ,𝑛𝑐 )
−−−−−−−−−−−−−−→ (𝑆 [(𝑚𝑝 , 𝑛𝑝 ) ↦→ (𝑠 ′𝑝 , 𝑢𝑖𝑑𝑐 ), (𝑚𝑐 , 𝑛𝑐 ) ↦→ (𝑠0, {𝑢𝑖𝑑𝑐 })], 𝐵 [(𝑚𝑐 , 𝑛𝑐 ) ↦→ 𝑏0], 𝐶 [𝑚𝑐 ↦→ 𝑛𝑐 + 1])

Trusted Send

𝑚𝑠 ,𝑚𝑟 ∈ MT 𝑛𝑠 , 𝑛𝑟 ∈ N 𝑒 ∈ ET 𝑣 ∈ VT
𝑡𝑖𝑑𝑟 = (𝑚𝑟 , 𝑛𝑟 , 1) 𝑆 [𝑚𝑠 , 𝑛𝑠 ] = (𝑠𝑠 , 𝑡𝑖𝑑𝑟 )
𝐵 [𝑚𝑟 , 𝑛𝑟 ] = 𝑏𝑟 (𝑠𝑠 , 𝑡𝑖𝑑𝑟 , 𝑒, 𝑣, 𝑠 ′𝑠 ) ∈ 𝐸𝑛𝑞(𝑚𝑠 )

(𝑆, 𝐵,𝐶)
(𝑚𝑠 ,𝑛𝑠 ),(𝑚𝑟 ,𝑛𝑟 ),𝑒−−−−−−−−−−−−−−−→ (𝑆 [(𝑚𝑠 , 𝑛𝑠 ) ↦→ (𝑠 ′𝑠 , 𝑡𝑖𝑑𝑟 )],

𝐵 [(𝑚𝑟 , 𝑛𝑟 ) ↦→ 𝑏𝑟

⊙
(𝑒, 𝑣)], 𝐶)

Untrusted Send

𝑚𝑠 ,𝑚𝑟 ∈ M 𝑛𝑠 , 𝑛𝑟 ∈ N 𝑒 ∈ EU 𝑣 ∈ VU
𝑢𝑖𝑑𝑟 = (𝑚𝑟 , 𝑛𝑟 , 0) 𝑆 [𝑚𝑠 , 𝑛𝑠 ] = (𝑠𝑠 , 𝑢𝑖𝑑𝑟 )
𝐵 [𝑚𝑟 , 𝑛𝑟 ] = 𝑏𝑟 (𝑠𝑠 , 𝑢𝑖𝑑𝑟 , 𝑒, 𝑣, 𝑠 ′𝑠 ) ∈ 𝐸𝑛𝑞(𝑚𝑠 )

(𝑆, 𝐵,𝐶)
(𝑚𝑠 ,𝑛𝑠 ),(𝑚𝑟 ,𝑛𝑟 ),𝑒,𝑣−−−−−−−−−−−−−−−−→ (𝑆 [(𝑚𝑠 , 𝑛𝑠 ) ↦→ (𝑠 ′𝑠 , 𝑢𝑖𝑑𝑟 )],

𝐵 [(𝑚𝑟 , 𝑛𝑟 ) ↦→ 𝑏𝑟

⊙
(𝑒, 𝑣)], 𝐶)

Figure 7: PSec Operational Semantics Rules

are multiple places where this condition holds, and we can
continue via a proof by cases:
(1) Create Transitions:

• 𝑂𝑏𝑠L (𝐺𝑘
1 ,𝐺

𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ) =

< (𝑚𝑝 , 𝑛𝑝 ), (𝑚𝑐 , 𝑛𝑐 ) >
• The parent machine identity and receiving machine identity
is assumed to be observable, which means they must be
identical in corresponding transitions. Since PSec has
deterministic transitions, 𝑆𝑘 and 𝐶𝑘 change in the same way
for both configurations while 𝐵𝑘 remains unchanged.

(2) Trusted Send Transition:
• 𝑂𝑏𝑠L (𝐺𝑘

1 ,𝐺
𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ) =

< (𝑚𝑠 , 𝑛𝑠 ), (𝑚𝑟 , 𝑛𝑟 ), 𝑒 >

• The sending machine identity, receiving machine identity,
and event type must be identical across the corresponding
transitions, but the non-observable difference between the
two transitions is the message payload. Since the message
payload must consist of secure, trusted data, the receiving
machine adds the payload to its trusted local state, thus
changing its 𝑡𝑣𝑎𝑙𝑠 . However, 𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1

1 ) = 𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1
2 )

regardless of the message payload sent in the two
transitions. This means 𝑆𝑘+11 ≈L 𝑆𝑘+12 . Since the event that
is enqueued in the buffer of the receiving machine is a
trusted event, 𝐵𝑘+11 ≈L 𝐵𝑘+12 . 𝐶𝑘 remains unchanged for
both configurations.

(3) Untrusted Send Transition:
• 𝑂𝑏𝑠L (𝐺𝑘

1 ,𝐺
𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ) =

< (𝑚𝑠 , 𝑛𝑠 ), (𝑚𝑟 , 𝑛𝑟 ), 𝑒, 𝑣 >

• The sending machine identity, receiving machine identity,
event type, and message payload must be identical.
Therefore, 𝑆𝑘 and 𝐵𝑘 change in the same way for both
configurations while 𝐶𝑘 remains unchanged.

(4) Local Transition:
• 𝑂𝑏𝑠L (𝐺𝑘

1 ,𝐺
𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ) = < 𝑢𝑣𝑎𝑙𝑠 (𝑠 ′) >

• The untrusted values stored in the local state of the machine
are assumed to be observable (since they can be leaked
through side channels. For USMs, since the entirety of their
state is untrusted, this would mean that the USMs must
undergo the exact same transition in both configurations.
For SSMs, this only applies if they only modify their
untrusted state in this transition, which would additionally
imply that the same transition must take place in both
configurations. The non-observable difference between the
two transitions for SSMs would be changes in trusted state
(modifying 𝑡𝑣𝑎𝑙𝑠). After this transition takes place,
𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1

1 ) = 𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1
2 ) since these values are not

modified, so 𝑆𝑘+11 ≈L 𝑆𝑘+12 (𝐵𝑘 and 𝐶𝑘 remain unchanged).
(5) Dequeue Transition:

• 𝑂𝑏𝑠L (𝐺𝑘
1 ,𝐺

𝑘+1
1 ) = 𝑂𝑏𝑠L (𝐺𝑘

2 ,𝐺
𝑘+1
2 ) =

< 𝑢𝑣𝑎𝑙𝑠 (𝑠 ′), 𝑒, (𝑣 |𝑒 ∈ EU ) >
• The untrusted values stored in the local state as well as the
newly dequeued value (if it is non-sensitive) of the machine
are assumed to be observable. For USMs, since the entirety
of their state is untrusted and they can only receive
untrusted events, they must undergo the exact same
transition in both configurations. For SSMs, this only applies
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if they are dequeuing an untrusted event, which also means
that the transition must be the same. The non-observable
difference between the two transitions for SSMs would be
the dequeuing of trusted events. The SSM may receive
sensitive data through the trusted event, thus modifying its
trusted state and appending to 𝑡𝑣𝑎𝑙𝑠 . After this transition
takes place, 𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1

1 ) = 𝑢𝑣𝑎𝑙𝑠 (𝐺𝑘+1
2 ) regardless of the

trusted event payload, so 𝑆𝑘+11 ≈L 𝑆𝑘+12 . Since the untrusted
events in the buffer are not modified in both configurations,
𝐵𝑘+11 ≈L 𝐵𝑘+12 . 𝐶𝑘 in this case remains unchanged.

Since we have proven that 𝐺𝑘
1 ≈L 𝐺𝑘

2 =⇒ 𝐺𝑘+1
1 ≈L 𝐺𝑘+1

2 for all
cases, we have proven PSec satisfies the confidentiality property of
observational determinism.

C.2 PSec Integrity Proof
Trusted Equivalence Definition In direct contrast to Observational
Equivalence, Trusted (H ) Equivalence is concerned with the
equivalence of trusted values in our system. We have the
following:

𝑣1 ≈H 𝑣2 ⇔ Γ ⊢ 𝑣𝑖 : 𝜏 ∧ (𝜏 = 𝐻 ⇒ 𝑣1 = 𝑣2)
𝑆1 ≈H 𝑆2 ⇔ 𝑡𝑣𝑎𝑙𝑠 (𝑆1) = 𝑡𝑣𝑎𝑙𝑠 (𝑆2)

𝐵1 ≈H 𝐵2 ⇔ 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐵1, 𝜆(𝑒1, 𝑣1). 𝑒1 ∈ ET ) = 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐵2, 𝜆(𝑒2, 𝑣2) . 𝑒2 ∈ ET )
𝐶1 ≈H 𝐶2 ⇔ ∀𝑚 ∈ M . 𝐶1 [𝑚] = 𝐶2 [𝑚]

𝐺1 ≈H 𝐺2 ⇔ (𝑆1 ≈H 𝑆2) ∧ (𝐵1 ≈H 𝐵2) ∧ (𝐶1 ≈H 𝐶2)

𝜋1 ≈H 𝜋2 ⇔ ∀𝑖 ∈ [0, 𝑛). 𝐺𝑖
1 ≈H 𝐺𝑖

2

Trusted Observation Function Definition We define a Trusted
Observation function (𝑂𝑏𝑠H ) that can be invoked by trusted
parties to map trusted transitions in our system to labels that
reveal changes in trusted state.

(1) Trusted Create: 𝑂𝑏𝑠H (𝐺𝑡 ,𝐺𝑡+1) = < (𝑚𝑝 , 𝑛𝑝 ), (𝑚𝑐 , 𝑛𝑐 ) >
(2) Trusted Send: 𝑂𝑏𝑠H (𝐺𝑡 ,𝐺𝑡+1) = < (𝑚𝑠 , 𝑛𝑠 ), (𝑚𝑟 , 𝑛𝑟 ), 𝑒, 𝑣 >

(3) Local Transition: 𝑂𝑏𝑠H (𝐺𝑡 ,𝐺𝑡+1) = < 𝑡𝑣𝑎𝑙𝑠 (𝑠 ′) >
(4) Dequeue Event:

𝑂𝑏𝑠H (𝐺𝑡 ,𝐺𝑡+1) = < 𝑡𝑣𝑎𝑙𝑠 (𝑠 ′), 𝑒, (𝑣 |𝑒 ∈ ET ) >
We need to prove the following for our system:

∀𝜋1, 𝜋2 ∈ P, 𝑛 ∈ N, 𝜋1 = 𝐺0
1

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

1 , 𝜋2 = 𝐺0
2

𝑎0−−→ ...
𝑎𝑛−1−−−−→ 𝐺𝑛

2 .

(𝐺0
1 ≈H 𝐺0

2) ∧ (𝑂𝑏𝑠H (𝜋1) = 𝑂𝑏𝑠H (𝜋2)) ⇒ 𝜋1 ≈H 𝜋2
We can prove this via induction and then a proof by cases.

Base Case 𝐺0
1 ≈H 𝐺0

2

Inductive Case Assume that there exists a 𝑘 such that 𝐺𝑘
1 ≈H 𝐺𝑘

2

Inductive Step We need to prove that if
𝑂𝑏𝑠H (𝐺𝑘

1 ,𝐺
𝑘+1
1 ) = 𝑂𝑏𝑠H (𝐺𝑘

2 ,𝐺
𝑘+1
2 ), then 𝐺𝑘+1

1 ≈H 𝐺𝑘+1
2 .

The proof proceeds in a very similar fashion to the confidentiality
proof, and we are able to similarly show that 𝐺𝑘

1 ≈H 𝐺𝑘
2 =⇒

𝐺𝑘+1
1 ≈H 𝐺𝑘+1

2 for all cases, thus proving PSec satisfies the
integrity property of observational determinism.
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