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Abstract
Programming models such as MapReduce and
DryadLINQ provide programmers with declarative
abstractions (such as SQL like query languages) for
writing data intensive computations. The models also
provide runtime systems that can execute these queries
on a large cluster of machines, while dealing with the
vagaries of distribution such as messaging, failures and
synchronization. However, this level of abstraction comes
at a cost – the inability to understand, predict and debug
performance. In this paper, we propose a performance
modelling approach for predicting the execution time of
distributed queries. Our modeling approach is based on
a combination of the critical path method, empirically
generated black box models and cardinality estimation
techniques from databases. We evaluate the models
using several real world applications and find that models
can accurately predict execution time to within 10% of
actual execution time. We demonstrate the usefulness
of the model in identifying performance bottlenecks,
both during design and while debugging performance
problems.

1 Introduction
Programming models such as Pig [32], Hive [20], Flume-
Java [3] and DryadLINQ [23] greatly simplify the pro-
cess of deploying and executing large scale batch com-
putations on a cluster of machines. These programming
models expose SQL like declarative query languages with
simple, sequential semantics. A distributed query engine
compiles, optimizes, schedules and executes these queries
on a cluster. Query engines exploit parallelism within and
across machines, and use optimizations such as pipelin-
ing to overlap computation and I/O. Query engines also
deal with the pitfalls of distribution such as asynchrony
and failures. The semantic simplicity coupled with high
performance has resulted in widespread adoption of these
models, even by novice programmers.

Problem. Despite their convenience, these program-
ming models have a key shortcoming – the difficulty of
reasoning about performance. Due to the declarative na-
ture of query languages, users have little insight into how

a query executes on a cluster, and consequently, how to
write queries for better performance. This problem is
compounded by the fact that many users of these mod-
els are not expert programmers but domains experts such
as data analysts and scientists. These users find it hard to
estimate how long a query may run, or how much it might
cost (if resources are charged). Often, the programming
models require users to specify resources (such as com-
pute nodes, storage and network bandwidth) that a query
may use a priori. In the absence of execution time esti-
mates or knowledge of potential bottlenecks, users end up
under or over allocating resources.

We illustrate this problem using a simple example.
Consider a query that clusters data points using the
kmeans algorithm (Figure 2). Figure 1 shows the execu-
tion times of this query for varying number of nodes for
an input consisting of 22 million points (45GB). As one
might expect, the execution time of the query decreases
with increasing number of nodes. However, assigning ad-
ditional resources beyond 25 nodes does not yield propor-
tional performance benefits (and only increases cost).

The second shortcoming of these models is the dif-
ficulty in diagnosing performance problems that occur
when a query executes on a cluster. For example, a com-
mon problem is data skew, which is caused by uneven
partitioning of data across machines. Data skew causes
load imbalance, low utilization of resources and in gen-
eral poor performance. Even if data is evenly balanced,
some operations in the query may stress a particular re-
source (such as the network switch or a disk) more than
others. Unfortunately, many of these problems are hard to
detect, diagnose and fix. The run-profile-optimize cycle
traditionally used for diagnosing and optimizing perfor-
mance is time consuming and impractical for large scale
distributed queries. In many cases, performance problems
only manifest with large workloads, and naively scaling
performance from a smaller workload can grossly under-
estimate performance. Although performance counters
collected from an actual run on the cluster can help di-
agnose performance issues, performance counter data is
voluminous, hard to interpret and map back to the query.

Solution Overview. In this paper, we propose an ap-
proach for building predictive performance models for
estimating and diagnosing performance of distributed
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Figure 1: Trade-off between number of machines used
and execution time for the kmeans query.

queries. Given a query, a workload and a cluster, our mod-
els predict the ideal execution time of the query on the
cluster. The ideal execution time of a query is the execu-
tion time in ideal conditions i.e. in the absence of failures
and contention from other queries. Our models also pro-
vide a fine-grained breakdown of ideal execution time and
resource utilization at the granularity of each machine.

Our approach for modeling performance of distributed
queries is based on the critical path method, a method
used for modeling and scheduling parallel activities. In
our model, query processing is abstractly represented by
a set of tasks. Each task consists of three phases, a read,
compute and a write phase. We represent the execution
of the query as a dependence graph, where nodes in the
graph correspond to phases. Edges model constraints that
limit parallelism, such as data dependencies, and resource
constraints such as number of available processor cores,
network ports, and memory buffers. We estimate the time
required for each phase using black box models for re-
sources such as disk and network. These estimates are
used to compute weights for edges in the dependence
graph. We determine the size of the graph (number of
phases) using cardinality estimation techniques (used in
conventional databases). Finally, we estimate the ideal ex-
ecution time of the query by computing the longest path
in the dependence graph i.e. the critical path.

These are several reasons why the critical path method
is a natural fit for modeling distributed query processing.

• The critical path method allows us to model paral-
lelism and resource contention more precisely than
other approaches (such as statistical, black box mod-

els). We use black box models only for components
that are hard to model using the critical path method
(such as disks and network).

• The models we build are composable. We first con-
struct critical path models for each query operator in-
dividually and then compose these models for differ-
ent compositions of query operators. Composability
is a key attribute since it greatly simplifies the pro-
cess of modeling complex queries, and permits the
modeling approach to be easily re-targeted to differ-
ent query engines.

• Models built using the critical path method are eas-
ily interpretable by end users. The outcome of the
modeling process is a list of nodes that lie on the
critical path. Often, a simple inspection of this list
can help identify bottleneck tasks. The decomposi-
tion of tasks into read, compute and write phase also
helps determine why a task is bottleneck.

• In addition to estimating query execution time, crit-
ical path based models can also be used to diagnose
performance bottlenecks in actual execution. The
models provide fine-grained breakdown of the exe-
cution time of the query on each machine in each
stage under ideal conditions. A comparison of the
actual execution times with estimated ideal execu-
tion times can identify the root cause of poor perfor-
mance.

We evaluate the models on several real world queries
and on several large datasets (most of the queries and
datasets are publicly available). We find that for all
queries, our model can predict execution time accurately
(to within 10% of actual execution time) in a fraction of
the time it takes to run the query. We also show that our
models enable design time optimization, and aid in diag-
nosing performance problems.

This paper is organized as follows. Section 2 provides
a quick overview of distributed query languages. In Sec-
tion 3, we describe our hierarchical modeling approach to
predict query performance. Section 5 discusses our im-
plementation. We present a detailed evaluation of our ap-
proach in Section 6 and discuss related work in Section 7.
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IQueryable<Point> KMeans(IQueryable<Point> points, int k) {
var centers = GetRandomCenters(k);
for(int i = 0; i < 3; i++)

centers = points.GroupBy(point => NearestCenter(point, centers))
.Select(g => CalculateNewCenter(g));

return centers; }

Figure 2: Query for k-means clustering.

2 Distributed Query Execution

This section provides an overview of how declar-
ative queries written in high level languages (such
as Pig-Latin [32], Hive [20], FlumeJava [3] and
DryadLINQ [23]) are translated into a distributed com-
putation. We illustrate this process using DryadLINQ.

Query Language. The query language underlying
DryadLINQ is LINQ [1], a .NET library that provides re-
lational constructs (Select, GroupBy, Join, Aggregation
etc.) for querying arbitrary collections of objects. Fig-
ure 2 shows the the k-means algorithm (Figure 2) ex-
pressed in LINQ. The program takes as input a set of
points, performs three iterations of the k-means clustering
algorithm and returns the resulting center points. During
each iteration, the query computes the nearest center for
every point (using the function NearestCenter), groups
all points by the nearest center, and then computes the new
center for each group (using CalculateNewCenter).

Query Compilation and Optimization. Given a LINQ
query, the DryadLINQ compiler constructs an Execution
Plan Graph (EPG). The EPG is a DAG where nodes rep-
resent computation stages and edges represent data flow
between stages. Each stage is composed of a set of
DryadLINQ operators. The DryadLINQ compiler sup-
ports a set of static compiler optimizations including
pipelining which merges a linear chain of operators into
a single stage so that all merged operators run on a sin-
gle node, and eager aggregation, which moves computa-
tion from downstream aggregations into upstream stages
to reduce the amount of data transmitted over the network.
The EPG for a single iteration of Kmeans after applying
these optimizations is shown in figure 3(a).

(a) (b)

Select

Sort

OrderedGroupBy

HashPartition

MergeSort

OrderedGroupBy

SelectSelect

CENTERSPOINTS POINTS CENTERS

CENTERS

Figure 3: (a) Optimized query plan for one iteration of
kmeans, and (b) Graph representing dataflow during exe-
cution of 3 iterations of kmeans. Computation stages are
shown in blue and data inputs are shown in gray.

Query Evaluation. DryadLINQ uses the Dryad engine
as the back-end for scheduling and executing queries.
Dryad maps each stage to multiple nodes in the cluster,
each of which operate on a partition of the data. For exam-
ple, the distribution of stages to cluster nodes for KMeans
is shown in figure 3(b). The points dataset is partitioned
across four nodes. DryadLINQ stages are run sequentially
one after the other. Dryad also sets up all communication
within and across stages. Communication between oper-
ators within a stage occurs via in-memory structures. At
the end of a stage the output data is persisted on to a file
on the local machine and the next stage reads this input
via remote file reads.

3 Performance Model

3.1 Response Variable

The first step in building a performance model is to iden-
tify the appropriate response variable(s). Performance of
a query can be characterized by several metrics. Query
optimizers in conventional databases use abstract metrics
such as the number of disk accesses as a proxy for perfor-
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mance. However, we believe concrete measures such as
execution time, bandwidth, and cost are more appropriate
since we target end-users in addition to query optimizers.

The execution time of a query on a cluster depends on
a number of dynamic parameters, such as the load on the
cluster, and transient process and network failures. Mod-
eling all these parameters is challenging. In this paper, we
choose the ideal query execution time as the primary re-
sponse variable. The ideal response time of a query on a
given cluster is the execution time of the query in the ab-
sence of failures and contention due to other queries. Un-
like a query’s actual execution time, the ideal execution
time is an intrinsic property of the query and the cluster
alone. It accounts for resource constraints due to query’s
own execution, and cluster specific parameters such as the
configuration of machines and the interconnect. In addi-
tion, the ideal response time is a measure that users can
easily comprehend and reason about at design time. Our
modeling approach can be adapted to predict other related
measures such as ideal cost and ideal network bandwidth
consumption.

3.2 Modeling approach
Our modeling approach is based on the critical path
method, a technique for analyzing processes composed
of a large number of tasks. Given the list of participat-
ing tasks, the dependencies between the tasks, and the
time taken to complete each task, the critical path method
computes the longest sequence of tasks to complete the
process. All tasks on this sequence are said to be on the
critical path, and the length of the critical path is an esti-
mate for the overall time to completion. These tasks are
ideal targets for optimization because reducing the time
to complete these tasks reduces the length of the critical
path and hence the overall time to completion. We now
describe how this method can be adapted to build perfor-
mance models for distributed queries.

As described in Section 2, query processing in a typi-
cal distributed query engine occurs in stages. A stage is a
composition of one or more operators and may span sev-
eral nodes. Processing in a stage involves reading inputs
from nodes in the previous stage (from files or remote lo-
cations), computing results, and persisting the results (to
disk or a remote location) for later stages. Our modeling
approach reflects this compositional nature of query pro-

cessing. We first build critical path models for each oper-
ator supported by the query engine. The models estimate
the ideal execution time of the operator when executed on
a single machine. We build these models by analyzing
the operator’s implementation and identifying steps and
dependencies that influence performance. In the next sec-
tion, we propose a generic framework for building opera-
tor level models. The operator level models are composed
to obtain a performance model for each node. Finally, we
compose models for each node to obtain a critical path
model for query execution on the cluster. In this paper, we
illustrate this approach using DryadLINQ. However, our
approach can be easily retargeted to other query engines
like Hive and FlumeJava, which have a similar execution
model.

3.3 Operator-level Model

Query languages supported by distributed query engines
support a number of relational and set theoretic operators.
We now present a generic framework for building criti-
cal path models for a large class of query operators. The
framework is based on the observation that most opera-
tor implementations across query engines are structurally
similar. The framework captures key tasks and dependen-
cies common to these implementations, while abstract-
ing away low level details. We show how this frame-
work can be instantiated to build models for operators in
DryadLINQ.

Framework. In our framework, we abstractly model
the execution of an operator as a pipeline with three
phases, namely read, compute and a write phase. During
the read phase, the operator reads input data from mem-
ory, disk or a remote location. The compute phase models
operator-specific logic performed on the input data. In
the write phase, the results of the compute phase are writ-
ten out typically to an in-memory output buffer which is
flushed to disk occasionally. A pipeline consists of many
instances of these three phases executing in parallel; we
refer to each such instance as a task. Figure 4 shows an
instance of a pipeline as a graph with nodes representing
phases. Two special nodes S and E represent the start and
end of execution.

During the execution of a pipeline, data flow and re-
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Figure 4: Graph based model of a 3-stage parallel pipeline. The nodes R, C and W represent read, compute and
write phases of the pipeline respectively. S and E are special nodes representing the start and end of an operator’s
execution.

source constraints induce dependencies between phases
(both within a task and across tasks). Our framework in-
corporates key dependencies that have the largest impact
on performance. These dependencies can be represented
as edges between phases in the pipeline graph.

• Data flow dependence between read phase and com-
pute phase within a task (Ri → Ci). This depen-
dence limits computation of a task from starting until
data has been read.
• Data flow dependence between compute and write

phase of the same task (Ci →Wi). This dependence
limits writes for a task from starting until computa-
tion has completed.
• Dependence due to the degree of parallelism cp

(Ci → Rj , j > i). This dependence constrains the
read phase of task j from starting unless Ci com-
pletes. In data parallel operators (such as select,
project, join), the degree of parallelism is limited by
the number of cores available on the machine, since
both read and compute phases require a dedicated
processor core. For inherently sequential operators
(such as ordered aggregation), the degree of paral-
lelism is 1.
• Dependence due to read parallelism rp (Ri →

Rj , j > i). The degree of read parallelism is de-
termined by the number of input data sources an op-
erator reads from in parallel. If an operator reads
from a file on disk, rp is 1 (assuming files on disk are
read serially). If the operator reads data from multi-
ple network locations (e.g. in the reduce operator),
rp is equal to the number of network locations. This
model permits multiple reads to progress in parallel,
as long as reads are from different sources.
• Dependence due to finite size of output buffer

(Wi → Wj , j > i). Many operator implementations
use buffering to avoid expensive writes to disks and
file systems. In these implementations, tasks write
their results to an in-memory buffer, which is flushed
to the file system or disk when it reaches close to ca-
pacity. The Wi →Wj dependence models stalls that
occur due to intermittent flushes. The dependence
exists between phases Wi and Wj if Wj must wait
for Wi before it can write to the output buffer.

The parallel pipeline is a simplified, abstract model of
execution for a large class of operators. The pipeline can
be instantiated to model data parallelism and parallelism
obtained by overlapping computation with I/O simply by
picking the right dependencies. For example, consider
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the set of operators supported by DryadLINQ [23]. True
data flow dependencies Ri → Ci and Ci → Wi exist
in all operators. The operators HashJoin, GroupBy,
Select, Where, SelectMany, Sum and Count are inherently
parallel and cp = P , where P is the number of available
processor cores. The operators Sort, HashPartition,
Union, Merge, Take, Distinct and OrderedGroupBy are
sequential i.e. cp = 1. The degree of read parallelism
in all operators is limited by the number of distinct data
sources. All DryadLINQ operators use buffering. Hence
the Wi →Wj dependence applies to all operators.

Computing the critical path. The next step in building
a critical path model for an operator is to estimate time
required to complete each phase in the pipeline. Specifi-
cally, we require estimates for the following parameters:

1. Number of tasks in the pipeline (N ),
2. Time to complete the read and compute phase for the

ith task (Tr(i) and Tc(i)),
3. Amount of data written out by task i (DW (i)),
4. Size of the output buffer (bufferSize),
5. Latency of flushing the output buffer to disk (Tflush)

We present one approach for estimating these parame-
ters in Section 5. Assuming these parameters are avail-
able, we compute the critical path as follows. Informally,
we associate every dependence with the amount of time
the destination of the dependence must wait since the
source has started. For example, the dependence Ri → Ci

is associated with Tr(i) because the compute phase of
task i must wait for at least Tr(i) units of time once the
read phase of the task has started for input data to be avail-
able. The critical path is the longest path (path with the
highest cumulative weight) from node S to node E.

Formally, the critical path can be interpreted as the ear-
liest time at which all dependencies of the end node E
have been satisfied. The length of the critical path is
be obtained by solving the set of recurrence equations
defined in Figure 5. Equation 1 determines the earliest
time since start of execution (ESTr(n)) at which the read
phase of a task n can begin. This depends on both the
availability of a free processor core (for performing the
read) and for the previous read from the same source to
have completed. If the degree of parallelism for the oper-
ator is cp, a processor core is available as soon as all but

cp − 1 of the previous compute phases have completed.
The first three clauses of this equation model initial con-
ditions, whereas the two cases in the final clause models
these dependencies in the steady state.

Equation 2 determines the earliest start time of a com-
pute phase, which only depends on the read phase of the
same task. Equation 3 determines the earliest start time
of the write phase. The write phase of a task can begin as
soon as the corresponding compute phase completes, and
there is space in the output buffer. We model buffering by
a dependence between a write phase W (n) and a previous
write phase W (i) such that the cumulative data written
by the intermediate write phases (represented by CDW )
exceeds the buffer size. We associate this dependence
with the latency Tflush. The query terminates once all
the write phases have completed (denoted by ESTe(T )).

3.4 Node-level Models

Each stage in distributed query processing is consists of a
number of operators. Broadly, there are two approaches
that query engines use for composing operator implemen-
tations, sequential and nested composition. We now de-
scribe these two composition and show how pipelines can
be composed to model these forms of composition and
build node-level models.

Sequential composition. Consider two operators op1

and op2 that apply functions f1 and f2 to their inputs
respectively. If the two operators have the same degree
of parallelism, they can be sequentially composed into an
operator that applies f2 ◦ f1 to its inputs. For example,
two select operators or an aggregation followed by select
can be sequentially composed. All operators in HIVE and
FlumeJava are composed this way. Sequential composi-
tion avoid the need for persisting data between operators;
data produced by one operators can be directly consumed
by the second.

We can obtain a model for the sequential composi-
tion of two operators by composing their compute phases.
Specifically, the labels of the pipeline representing the se-
quential composition are as follows.

Tr(n) = T 1
r (n), Tc(n) = T 1

c (n) + T 2
c n, Tw(n) = T 2

w(n)
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ESTr(n) =



0, 1 <= n <= min(rp, cp)

min({ESTc(n− i) + Tc(n− i) | 1 ≤ i ≤ cp}), rp > cp, cp + 1 <= n <= rp

ESTr(n− rp) + Tr(n− rp), cp > rp, rp + 1 <= n <= cp

max(ESTr(n− rp) + Tr(n− rp),

cp
th max({ESTc(i) + Tc(i) | 1 ≤ i ≤ N − 1})), max(rp, cp) + 1 <= n <= N

(1)

ESTc(n) = ESTr(n) + Tr(n) (2)

ESTw(n) =


ESTc(n) + Tc(n), n = 1

max(ESTc(n) + Tc(n),

(ESTw(n− i) + Tflush | CDW (i) >= bufferSize, CDW (i + 1) < bufferSize))
where CDW (u) =

∑n−1
n−u DW (u) n > 1

(3)

ESTe(N) = max({ESTw(i) | 1 <= i <= N}) (4)

Figure 5: Set of recurrence equations, whose solution for the earliest start time (EST) for the end node ESTe(N)
represents the ideal execution time of N tasks of the pipeline. Tr and Tc represent the time taken by the read phase
and compute phase respectively. Tflush represents the time to flush from from buffer to disk. cp and rp represent the
read and compute parallelism. DW (i) refers to the amount of data written by task i

Figure 6: A graph based model of a simply nested parallel
pipeline where a parallel operator is composed with an
inherently sequential operator.

where T 1
r (n), T 1

c (n), T 1
w(n), T 2

r (n), T 2
c (n), and T 2

w(n)
are the read, compute and writes times of the nth thread
of the two pipelines respectively. These labels can be used
with Equation 5 to obtain the ideal execution time of the
resulting pipeline.

Nested composition. Nested composition is form of op-
erator composition where k tasks of the first operator form
the read phase of the second operator. Figure 6 illustrates
the graph based model of this composition for k = 3.
This form of composition models DraydLINQ’s lazy eval-

uation strategy where later operators in stage fetch re-
sults from earlier operators on demand. For example, in
DryadLINQ, a select followed by sort is implemented in
this fashion. This ensures that the compute phase of sort
(which is sequential and expensive) occurs in parallel with
read and compute phases of select. For this composition,
the labels of the new pipeline can be expressed as follows.

Tr(n) = EST 1
e (k), Tc(n) = T 2

c (n), Tw(n) = T 2
w(n)

where EST 1
e is the ideal execution time of a k-thread

pipeline of the first operator.

3.5 Cluster-level Model
We now present an analytical model for predicting the
ideal execution time of a query on a cluster. The ba-
sis for the model is a graph based representation of the
execution of the query on the cluster, which is derived
from the query plan. The graph models cluster-level par-
allelism in the query and the effects of data dependen-
cies across stages. In this graph based model, each stage
Si is represented by a set of nodes Si

j , 1 ≤ j ≤ m,
where m is the number of machines participating in stage
Si. Two special nodes S0 and Se represent the start and
end of query execution. An edge exists between nodes
Si−1

u and Si
v if there is a data dependence between these

7



Figure 7: A graph based model of query execution on the
cluster. The first stage and the second stage use 5 and 4
machines respectively.

nodes. Each edge is weighted by ideal execution time
of the source node, obtained using node level execution
models described earlier. Given this model of execution,
the ideal execution time of the whole query is determined
by the critical path i.e. the path with the largest cumula-
tive weight amongst all paths from S0 to Se. An example
graph for a 2-stage query is shown in Figure 7.

4 Parameter Estimation
The critical path based modeling framework we propose
is parameterized by the number of tasks in the pipeline,
time to complete read and compute phases, and output
buffer parameters such buffer size and flush latency. We
now describe an approach for estimating these parameters
for a given operator on a given cluster.

Number of tasks. Many operator implementations ex-
ploit machine level data parallelism by partitioning the
input into chunks and create a task for processing every
chunk. The number of tasks depends on the cardinality of
the input and the chunk size.

Cardinality estimation is a well-known problem in
databases and many candidate solutions exist. Arguably,
the most effective solutions are based on sampling. Infor-
mally, the basic idea is to run the query using a sample of
the input, find the cardinality of the input at every opera-
tor in the sampled run, and scale up the cardinality by the
sampling factor. We estimate cardinalities using a simi-
lar approach. We run the query using a random sample

(with replacement) of the input and generate intermedi-
ate results at the end of every stage. We then estimate
the cardinality at each node in a stage by applying the
corresponding partition function to the sample input data,
and scaling up the resulting cardinalities by the sampling
factor. It the input to a stage is a grouping (result of a
GroupBy operator), we use a distinct value estimator [4]
to estimate the number of groups.

The second parameter that determines the number of
tasks is the chunk size. In practice, we find that every
operator implementation determines a chunk size (based
on experiments and domain knowledge). Therefore, we
leave the chunk size as a parameter for the operator level
model. The number of tasks N for an operator is S/C,
where S is the estimated cardinality of the input and C is
the chunk size.

Read Times. The read time of a task depends on the
amount of data read by the task, and the data transfer rate.
The amount of data read in turn depends on the chunk size
and the size of the records in the partition. In some cases,
size of input records can be determined statically from the
size of the data type use to store input records. However,
this approach does not work if the size of the type is vari-
able. As an example, consider the k-means query where
each point is an n-dimensional vector. If each point is rep-
resented by an array of integers, the size of each record if
fixed. However, if adjacency lists are used, the size cannot
be statically determined. In such cases, we use sampled
inputs to estimate the distribution of record sizes RSi of
each task i. We partition the sampled input to the node
into N contiguous sets of records s1, . . . , sN (where N is
the number of tasks). We then compute a histogram of the
size of records in set si, and scale up the frequencies in the
histogram by the sampling rate to obtain the distribution
RSi.

Determining the ideal data transfer rate is also chal-
lenging because the rate depends on the source of the
data (disk, network location in the same rack or differ-
ent rack) and the amount of data read. We use micro-
benchmarking to build black box models for the disk and
network. Our micro-benchmarks are read intensive work-
loads that are parametrized by the record size, amount
of data to read, and the source of the data (local or re-
mote). We run these workloads on an unloaded cluster
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for different record sizes and measure data transfer rates
(bytes/sec) for each record size. We obtain one such dis-
tribution for local reads, intra-rack reads, inter-rack reads.
Since it is not possible to tabulate rates for all record sizes,
we measure rates for selected data points and use linear
interpolation to estimate data transfer rates for a given
record size.

Let RT represent the data transfer rate distribution for
reads applicable to the operator. The ideal read time of
task i, the amount of time to complete the read phase of
task i (represented by Tr(i)) is determined as follows.

Tr(i) =
∑

j∈dom(RS)

j ×RSi(j)/RT (j) (5)

Note that if the record size is statically determined to be
a constant and the input data is partitioned equally across
threads, then the ideal read time Tr(i) for each task is the
same. Also note that due to the use of black-box models
and sampling, we can only estimate the ideal read times.
We cannot guarantee that the ideal read times we compute
are always less than actual read times, although this tends
to be the case in practice.

Compute times. The compute phase of each task ap-
plies an operator-specific function to each input record.
The time to complete the compute phase depends on the
cardinality of the input and the complexity of this func-
tion. Query languages such as LINQ permit arbitrary
user-defined functions to be used in conjunction with re-
lational operators. In general, estimating the complexity
user-defined functions is hard. One option for estimating
complexity is static analysis [15]. However, static analy-
sis tends to be conservative and is not designed to estimate
constants in complexity, which are important for estimat-
ing execution time. Instead, we choose a simple, sampling
based approach to this problem. During the sampling run,
we measure the function’s execution time, along with in-
put record size. Let ETf be the distribution of execution
times of a function f for different record sizes. Given
RSi, sampling rate s, we estimate the ideal compute time
of a task i (represented by Tci) as follows.

Tc(i) =
∑

j∈dom(RS)

RSi(j)× ET (j) (6)

Write Parameters. The last operator in every stage
writes the results of the stage out to a buffer and even-
tually to persistent storage. The parameters we must esti-
mate for the write phase are the amount of data output by
each task, the buffer size, and the rate at which the persis-
tent storage medium can commit writes. The amount of
data to be written depends on the cardinality of the input,
size of output records, and the selectivity of the operator.
The selectivity of an operator is the factor by which the
operator scales its input.

Estimating the selectivity of an operator is challenging
because it is a function of both the inputs and the operator.
We use sampling to determine selectivity. For operators
with a single input and output, the estimated selectivity
is simply the ratio of the sampled input and output. For
natural joins (which takes multiple inputs and produces a
single output), we use an approach proposed by Chaud-
huri et al [5] (which also describes limitations of this ap-
proach). We first perform a join over the sampled inputs
and compute the sample output size(out). If the sampling
rate is s, and k is the number of inputs to the join, then
we use out/sk as an estimate for query output size. To
determine the output record size distribution (RSout) we
use a technique similar to the one used to estimate input
record size distributions.

Given the selectivity of the operator and the output
record size distribution, we can estimate the amount of
data (DW (i)) written by the task i.

DW (i) =
∑

j∈dom(RSout)

j × sel ×RSouti(j) (7)

We estimate bufferSize and the latency to flush the
buffer Tflush using micro-benchmarking. In this case,
our micro-benchmarks are write intensive queries that are
parametrized by the amount of data to write. We run
these querying while varying the amount of data written
and measure the write latencies. We observe that the data
transfer rate distribution has a step curve i.e. there exists
a threshold such that writing amounts less than threshold
has virtually no latency, whereas writing data larger than
the threshold has a high latency. We estimate bufferSize
to be this threshold, and the buffer flush latency Tflush to
be the latency of writing bufferSize bytes.
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5 Implementation
We have implemented a tool that estimates ideal execu-
tion time for DryadLINQ queries using the approach de-
scribed above. The tool consists of a micro-benchmarking
component, which estimates cluster and machine specific
parameters. We expect the cluster administrator to run the
micro-benchmarks once initially and subsequently when
the cluster configuration changes.

The estimation component of the tool consumes query
plans generated by the DryadLINQ compiler. Given a
query plan and an input, the tool generates a sample of the
input, and runs an instrumented version of the query on
the sample. The instrumented version generates statistics
such as input cardinalities. These statistics, along with
the output of micro-benchmarking, are used to compute
parameters for the model. The tool uses the query plan to
build a cluster level model. The tool outputs an estimate
for the ideal execution time of the query and the entire
critical path.

6 Experimental Evaluation
In this section, we present a detailed evaluation of the ac-
curacy and cost of our modeling approach. We evaluate
our models using 7 real-world queries operating on rep-
resentative data sets. We also evaluate the utility of the
model in debugging actual executions.

Experimental Setup and Methodology. For our evalu-
ation, we use an in-house cluster with 240 machines. Each
machine has two dual-core AMD Opteron CPUs with
clock speeds of 2.6 GHz, 16 GB of DDR2 RAM, four
750 GByte SATA hard drives, and 2 high speed (1 Gbps)
ethernet cards. Each machine runs Windows Server 2003
(64-bit version). The machines are placed on 9 racks,
each rack has a dedicated switch with three 10Gbps links.
Each of these rack switches are directly connected to a
central core-switch via a 30 Gbps link. The cluster uses
TidyFS [11] as the distributed file system that provides
necessary abstractions for data parallel computations, en-
abling features like replication, fault tolerance and high
throughput data access.

We evaluate the modeling approach by comparing pre-
dicted ideal execution time with actual execution time for
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Figure 8: Prediction accuracy

each query/input pair. We measure actual execution times
by running queries directly on the cluster. We run each
query 5 times and report the mean and 95% confidence in-
tervals. We use a sampling rate of 10% for all queries, this
is consistent with the sampling rate used by databases [4].

Benckmarks. Table 1 describes the queries and datasets
we used to evaluate the modeling approach. All queries
and datasets are obtained from a production DyradLINQ
cluster.

Prediction accuracy. Figure 8 shows the actual and
predicted execution times with confidence intervals. For
several queries, the difference in predicted and actual ex-
ecution times is not statistically significant. The largest
percentage error in the mean values is 7% for the fea-
ture extraction query. Also note that the predicted exe-
cution times are lower than the actual times for almost all
queries. This is expected since the disk and network read
and write time distributions used for predicted are com-
puted under ideal conditions.

Next, we evaluate the prediction accuracy of the model
at the stage level.

k-means. Table 2 shows the predicted ideal execution time
and actual runtime for two stages, nearest center compu-
tation (NC) and new cluster center computation (CC) in
5 iterations of the k-means query (with k = 24) for two
datasets. We report mean actual and predicted execution
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k-means Clustering We evaluate two versions of the query shown in Figure 2, one in which the method computeNewCenters is marked associative (enables
eager aggregation) and another in which it is not. We use two publicly available data sets, the bag of words (pubmed) dataset [29]
with 22 million articles (12GB, 5 partitions) and a data set of 47,000 books from project Gutenberg (45GB, 5 partitions).

WordTopDocs WordTopDocs is a query that counts the frequency of words in a set of documents and returns the top k words per document.
We use the Gutenberg data set (45GB, 5 partitions).

SkyServer Q18 The query [22] computes the gravitational lens effect by comparing locations and colors of stars in a large astronomical table.
We use data from the Sloan Digital Sky Survey database [14] (5 billion objects, 100GB, 6 partitions).

Histogram computation This query finds the frequency distribution of a given attribute in a dataset. We use the Gutenberg dataset (45GB, 5 partitions).
AVFScore Outlier Detection Finds top K outliers using AVFScore[25]. We use the Gutenberg dataset (45 GB, 100 partitions).
Feature Extraction We use two proprietary queries that perform feature extraction. They extract relevant information from phone call logs. The queries

use two tables, a subscriber table and a service usage table. Experiments were conducted on a real world dataset with subscriber
table (756MB) and service usage table (110GB, 15 partitions).

Page Rank PageRank is a query for scoring web pages based on random walks over the web graph. The query keeps page ranks for each page
and iteratively updates these scores using power iteration. The dataset we use contains 10 billion pages (225GB, 90 partitions).

Table 1: Queries and datasets used for evaluating the predictive model.

times since the variance across executions is low (as seen
in Figure 8). The table also shows the % difference in
mean values, and the overall weighted mean % difference
obtained by weighting stage level difference by their ac-
tual execution time.

From a modeling perspective, k-means is a challenging
benchmark for several reasons. With each iteration of
k-means, the mapping of points to clusters changes,
which can be hard to predict. Also note that the actual
execution time of the first stage decreases over iterations
for both data sets. This is because in successive itera-
tions, the number of active centers i.e. centers with some
points associated with them reduces as points cluster
around a small number of centers. Since the number of
centers reduces, the amount of time it takes to compute
the nearest center for each point also reduces. Our
performance model is able to predict this variation across
iterations, as observed by small stage level differences.
We also observe that the model is reasonably precise
across two data sets. Furthermore, the model is able to
predict the reduction in execution time of the second
stage of kmeans when the function CalculateNewCenter
is declared associative. This annotation allows the query
engine to perform partial aggregation in the first stage
and reduce the amount of data that must be transferred
between stages. The experiment illustrates the utility of
an accurate performance model in identifying optimiza-
tion opportunities quickly at design time.

Outlier detection. The outlier detection query has six
stages. The first four stages compute the frequency of
all possible bi-grams across all input documents. The
fifth stage computes the AVFscore per document using bi-

Stage Actual Predicted Diff
Time(s) Time(s)

Merge + GroupBy + HashPartition 291 207 28.88%
Merge + GroupBy 136 189 38.90%

Merge 24 38 58.33%
Select + Sort + Take 16200 17193 6.12%

MergeSort + Take 29 17 41.37%
Total 16755 17604 6.93%

Table 3: Stage level breakdown of the actual and predicted
execution times for the outlier detection query.

gram frequencies. This stage is computationally expen-
sive due to a user-defined function which computes a sum
of the frequency of each bi-gram in the document. The
complexity of the function is linear in the size of the doc-
ument with a large constant due to the cost of looking up
the bi-gram frequency distribution, which is maintained
as a map in memory.

Table 3 shows a per stage breakdown for this query.
Our black box approach is able to estimate compute
times with 6% difference on average, which eventually
determines the weighted % difference.

Feature extraction. The feature extraction query is a very
complex query with 13 stages. Unlike most queries where
stages occur in a sequence, the stages of this query form
a DAG with results from multiple sequences combined
two stages, once via a join and another with a union. Ta-
ble 4 shows a stage level breakdown of the execution time.
Again, our approach is able to estimate the execution time
of long running stages with high accuracy. The % differ-
ence for short running stages are higher due to high errors
in cardinality estimation.
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Bag Of Words Gutenberg Gutenberg(Associative)

Stage Iteration Actual Predicted Diff Actual Predicted Diff Actual Predicted Diff
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

NC 1 420 413 1.67% 1489 1412 5.17% 1612 1567 2.79%
CC 316 293 7.28% 445 418 6.07% 39 35 10.25%
NC 2 529 607 14.74% 874 805 7.89% 879 905 2.95%
CC 351 311 11.40% 887 857 3.38% 33 35 6.00%
NC 3 133 115 13.53% 455 442 2.86% 695 742 6.76%
CC 327 312 4.59% 801 784 2.12% 39 35 10.25%
NC 4 135 113 16.30% 500 487 2.60% 776 762 1.80%
CC 331 310 6.34% 847 812 4.13% 37 35 5.40%
NC 5 135 114 15.56% 437 486 11.21% 537 571 6.30%
CC 333 309 7.21% 789 811 2.79% 32 35 9.30%

Total 3009 2856 9.26% 7524 7314 4.68% 4679 4722 3.87%

Table 2: Stage level breakdown of the actual and predicted execution times for the k-means query.

Stage Actual Predicted Diff
Time(s) Time(s)

Where 1136 1089 4.14%
Sort + HashPartition 65 45 30.77%

MergeSort + GroupBy
+ Select + HashPartition 35 27 22.86%

Sort + OrderedGroupBy + HashPartition 305 325 6.56%
DryadMerge 15 2 86.67%

HashJoin + Partition 78 55 29.45%
Merge 9 0 100.00%

Where + Sort +Partition 89 78 12.36%
Sort + GroupBy + Partition 45 33 26.67%

Merge 9 0 100.00%
Union 45 34 24.44%

Sort + Partition 67 55 17.91%
Merge + GroupBy + Where 78 66 15.38%

Total : 1733 1626 8.48%

Table 4: Stage level breakdown of the actual and predicted
execution times for feature extraction query.

Sensitivity Analysis. A key decision in using the crit-
ical path method is identifying dependencies between
tasks. The experiments above show that our choice of de-
pendencies leads to simple and precise models. However,
are all dependencies we model required to achieve high
precision, or can the framework be simplified further by
eliminating some dependencies? To answer this question,
we perform a simple experiment. For each dependence,
we build an alternate model that ignores the dependence.
We also build a model where a dependence exists between
every Ci and Ri+1, modeling a processor with one core.
The column All represents the baseline model that consid-
ers all dependencies as described above.

Observe that the prediction accuracy is impacted sig-
nificantly if any of the dependencies are dropped. Model-
ing constraints on read and compute parallelism is par-

0

500

1000

1500

2000

2500

3000

3500

5 15 25 35 45 55 65 75 85 95E
xe

cu
ti
o

n
 t

im
e
 (

se
c)

Number of nodes

Actual Predicted

Figure 9: Prediction accuracy for kmeans query for vary-
ing number of machines.

ticularly important. The dependence due to finite out-
put buffer is relatively the least significant. However,
ignoring this dependence can cause the model to under-
approximate execution time by as much as 10%.

Modeling Time. An important parameter for any pre-
diction tool is the time taken to predict the execution time.
Table 6 shows the time taken by our modeling tool to pre-
dict execution time of various queries. We report time
spent in running the query with the sample input, and in
building critical path models and computing the critical
path. Observe that the total modeling time is a fraction of
the query execution time (4-5% on average).

Design space exploration. We used our modeling ap-
proach to explore the effect of varying number of ma-
chines on the performance of the kmeans query. Figure 9
shows the mean actual and predicted execution times for
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Benchmark Actual Sample Modeling Total % Total
Time(s) Time(s) Time(s) Time(s)

kmeans (Gutenberg) 7521 41 55 96 1.32%
WordTopDoc 1768 41 143 184 10.24%

SkyServer 5104 73 178 251 4.19%
Histogram 2414 44 34 78 3.06%

Feature-Extractor-1 1821 25 56 81 4.44%
Feature-Extractor-2 1733 38 67 105 6.05%

Outlier Detection 16755 245 149 394 2.34%
Page Rank 4448 89 189 278 6.25%

Table 6: Total prediction time for benchmark applica-
tions.

the kmeans query running the Gutenbeg data set. We ob-
serve that the predicted execution times closely tracks the
actual execution time. Thus, our model can help end users
make crucial design time decisions with reasonable accu-
racy without performing expensive runs.

Debugging. We performed a simple experiment to eval-
uate the use of our models for debugging. During an exe-
cution of k-means, we simulated a slow disk on one of the
machines in the first stage (by injecting delays in calls to
disk reads). Not surprisingly, injecting these delays slows
the execution. We then compute the critical path with and
without the delay (both at the stage level and the cluster
level). This slowdown causes a change in the critical path.
Specifically, the machine with the simulated delays exists
on the actual critical path but not on the predicted critical
path.

Figure 10 shows both predicted and actual critical path
of the slow machine (some dependences and weights not
shown for clarity). Note the change in the critical path
from one that alternates between read and compute phases
to a path that goes through read phases exclusively. There-
fore, one can infer that the performance problem is due to
increases read latencies. Finding out why some phases
move to the critical path requires a deeper investigation.
However, narrowing the potential cause can help isolate
the problem and drive optimizations. In this case, it is
possible to improve performance simply by excluding the
slow machine.

Figure 10: The difference in critical paths of predicted
and actual executions of k-means due to injected delays.

7 Related Work
Parallel database engines utilize performance models dur-
ing query optimization to cost query plans and compare
alternatives. Early optimizers [18, 21] adopted a two step
strategy where the optimal single machine query plan is
identified as the first step and the chosen plan is paral-
lelized as a second step. Such optimizers do not account
for parallelism during costing. The cost metrics used by
most single step optimizers [13, 27] are typically a vec-
tor containing one cost per resource considered. A single
cost metric is then computed using a simplified weighting
scheme [34]. Many models are built for specific parallel
systems (like shared disk and shared memory) that have
not found wide spread adoption [26]. RoPE [2] revisits
the problem of query optimization in a modern distributed
query engine. RoPE utilizes the fact that in such systems
queries are often executed repeatedly with little change in
workloads. They propose a adaptive query optimization
technique that piggybacks information collected over pre-
vious executions to optimize and improve the query plan
over multiple runs. Cost estimates in query optimization
are only used to compare alternatives. None of the mod-
els take into account inter and intra machine parallelism
within and across resources to the extent that we do in this
paper and hence their cost estimates may not be accurate
representations of execution time.

Recently a few optimizers have also been proposed for
map reduce style jobs written in imperative languages.
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Query All No Ri → Rj No Ci → Rj Ci → Ri+1 No Wi → Wj

k-means 7741 2298 5672 9589 7206
SkyServer 5011 1784 4321 7751 4981

Feature-extraction 1722 756 1439 2157 1688
Page rank 4562 1876 4125 4785 4012

Outlier 17604 6345 11563 21005 18013

Table 5: Sensitivity analysis for dependencies.

Manimal [24] is a tool to analyze low level map-reduce
programs and identify opportunities for data centric opti-
mizations (some of which are also used by database sys-
tems) like data filtering, projection and data specific com-
pression. Herodotou et al. [19] propose profile driven tool
that enables what-if analysis to identify the best configu-
ration parameters for a given query. In cotrast, we target
declarative query languages and exploit the semantics of
the operators to build detailed white-box models. We also
do not rely on information collected from full runs of the
job.

Osman et al. [33] propose analytical models based on
queuing networks to compare different database design
alternatives. Disk I/O cost is the response variable tracked
by these queuing models. STEADY [8] uses queuing net-
works to estimate the response time of a query in a parallel
database. They map queries to pre-identified resource us-
age profiles and then use heuristic rules to labels resources
as M/M/1 or M/G/1 queuing systems. Our model differs
from these as it targets query response time and models
resource parallelism directly using critical path models.
An alternate approach for predicting query performance is
the use of black-box statistical and machine learning mod-
els [12, 7]. In general, black box approaches suffer from
the problems of finding the right feature vectors. Here,
we take a mixed approach to the use of black box models,
preferring white box models that expoit the semantics of
relational operators as far as possible.

A key component of a performance model for database
engines is a cardinality estimator [17, 5, 9, 4, 16]. It
predicts the size of the output of a given operator in a
query. Cardinality estimation is especially challenging for
queries with joins and aggregations. At a high level, ap-
proaches for cardinality estimation can be classified into
four categories, namely histograms, sampling, curve fit-
ting and parametric methods. Harangsri et al provide a
complete survey of query size estimation techniques in
database systems. Chaudhuri et al. [5] study sampling

in the context of joins and investigate the limits of sam-
pling based approaches. Haas et al. [16] survey many dis-
tinct value estimators (used to estimate number of groups
in group-by/aggregation queries) and propose a few new
ones. Charikar et al. [4] improve on these and propose
a hybrid estimator with some theoretical guarantees. We
utilize cardinality estimation in our models to estimate the
number of tasks that an operator will employ.

Another problem closely related to query time estima-
tion is the progress estimation [28, 6]. Here the goal is
to roughly estimate the progress of a query. These pa-
pers propose analytical models for progress estimation
while assuming the presence of an accurate cardinality
estimator. Parallax [31] extends these approaches to es-
timate the progress of MapReduce Jobs. ParaTimer [30]
and Jockey [10] further adapt progress estimators for dis-
tributed frameworks by providing multiple estimations,
each accounting for different possible future behaviors
(failures, reduced resources etc). Progress estimators have
the advantage that they can use feedback from the execu-
tion in progress to refine estimates, an option not avail-
able at design time. Progress estimates cannot be used for
making design time optimizations like query refactoring,
estimating resource requirements and evaluating the cost
of running a query.
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