
Design of On Board Computers

for a Nanosatellite

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Ankush Pankaj Desai

Y8111008

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May, 2010

Contents

Acknowledgements x

Abstract xi

1 Introduction 1

1.1 Mission Objectives Of JUGNU Nanosatellite 2

1.2 JUGNU: As a Satellite . 3

1.3 On Board Computers for JUGNU . 6

1.4 Problem Description . 7

1.5 Layout of the thesis . 8

2 On Board Computers For JUGNU 9

2.1 On Board Computer - 1 . 13

2.1.1 Hardware Specifications . 13

2.1.2 Software Specifications . 14

2.2 On Board Computer - 2 . 16

2.2.1 Hardware Specifications . 16

2.2.2 Software Specifications . 17

3 Software Design of On Board Computers 20

iii

3.1 Health Monitoring on Satellite . 21

3.1.1 Temperature Monitoring . 22

3.1.2 Power Monitoring . 23

3.1.3 Device Health and Performance Monitoring 23

3.2 Event Sequencing on Satellite . 24

3.2.1 Periodic Events . 26

3.2.2 Scheduled Events . 26

3.3 Satellite System Time . 27

3.4 Tasks List . 27

3.4.1 On Board Computers - 1 . 28

3.4.2 On Board Computers - 2 . 32

4 Communication System for JUGNU 35

4.1 Communication Link Specifications 36

4.2 Introduction to Communication System 36

4.2.1 Telecommand Uplink . 38

4.2.2 Telemetry Downlink . 38

4.2.3 Beacon Downlink . 39

4.2.4 Protocol Design . 39

4.3 Communication System Block Diagram 40

4.3.1 Ground Station . 41

4.3.2 Satellite Communication System 41

4.4 Communication Window . 42

4.4.1 Simulation Results . 44

4.4.2 Telemetry Data Transfer . 46

iv

4.5 Communication Protocol . 49

4.5.1 Communication Protocol Stack 50

4.5.2 Error Control . 53

4.5.3 Packet Formats . 54

4.5.4 Beacon . 58

4.5.5 Variable Packet Length in Downlink Protocol 66

4.5.6 Variable Baud Rate for Satellite Downlink 75

4.5.7 Phases in communication window 80

4.5.8 Uplink Data link control protocol 89

4.5.9 Downlink Data link control protocol 91

4.5.10 Link Failure Mode . 100

5 Software Fault Tolerance 103

5.1 System Reset Based Mechanism . 104

5.1.1 External Watchdog Timer . 104

5.1.2 Internal Watchdog Timer . 104

5.1.3 OBC-1 & OBC-2 Periodic Check 105

5.2 Checkpoint and Recovery Based Mechanism 105

5.3 Task Restart Based Mechanism . 106

5.4 Effect of Radiations in Space . 106

5.4.1 Triple Modular Redundancy (TMR) 108

5.5 TMR on Program Memory . 108

5.6 TMR on SDCARD . 112

6 Conclusions 115

v

Bibliography 117

vi

List of Figures

1.1 Subsystems of JUGNU nanosatellite 5

2.1 Block diagram Of JUGNU nanosatellite 10

2.2 CubeSat Kit flight module FM430 (REV C) 13

2.3 OBC-2 ARM Board . 18

3.1 Tasks scheduled on OBC - 1 . 31

3.2 Tasks scheduled on OBC - 2 . 34

4.1 Block diagram of communication subsystem. 37

4.2 Block Diagram of the satellite communication system 40

4.3 Communication window simulation results 44

4.4 Communication window simulation results 44

4.5 Communication protocol stack . 51

4.6 Control command packet format . 54

4.7 Satellite to GS packet format . 56

4.8 Ground station to satellite packet format 56

4.9 Beacon packet format . 59

4.10 BER vs SNR . 67

4.11 Error free packets Vs packet length 68

vii

4.12 Time vs packet length for BER=1e-4 69

4.13 Time vs packet length for BER=1E-3 71

4.14 Time vs packet length for BER=5e-4 72

4.15 Change baud rate protocol on satellite 77

4.16 Change baud rate protocol on ground station 79

4.17 Phases during the communication window of the satellite 81

4.18 Reliable link initialization protocol. 84

4.19 Link closure phase . 87

4.20 Time Intervals in downlink protocol 93

4.21 Satellite sender process flow chart . 98

4.22 Ground station receiver process flow chart 101

5.1 TMR implementation on internal program memory. 111

5.2 TMR implementation on SDCARD. 114

viii

List of Tables

2.1 Hardware specification of OBC - 1 . 13

2.2 Hardware specification of OBC - 2 . 16

4.1 Specifications for uplink, telemetry and beacon. 36

4.2 Orbital parameters . 43

4.3 Payload data priority . 46

4.4 Possible data transfer in one communication window 47

4.5 Health Status Data . 48

4.6 Payload and non critical data . 49

4.7 Packet overhead bytes . 58

4.8 Power status quantized values . 60

4.9 Temperature quantized values . 62

4.10 Devices list . 63

4.11 Satellite modes . 64

4.12 20 KB data transmission time for BER = 1E-4 69

4.13 20 KB data transmission time for BER = 1E-3 70

4.14 20 KB data transmission time for BER = 5E-4 71

4.15 Packet length depending on channel performance 74

ix

Acknowledgements

I offer my sincerest gratitude to my guide Dr. Arnab Bhattacharya who has always

given me opportunity to learn more and more, supported me throughout my thesis

with constant encouragement, being patient.

I am deeply indebted to Dr. N. S. Vyas for his stimulating support. I further

extend my gratitude to Dr. S. G. Dhande for his motivational and encouraging

words. I would like to extend my sincere thanks to my colleagues, Shantanu Agrawal,

Ankesh Garg, Amritsagar and my juniors, Shashank Chintalagiri, Vijay S., Arpit

Mathur and to all the other members of JUGNU Team for their support, to all my

friends for their inspiring words and for making my stay at IIT, Kanpur a memorable

one.

I would also like to thank the faculty members of Computer Science and Engi-

neering Department for imparting me with invaluable knowledge and adding a lot of

value-oriented growth to my career.

Above all, I am blessed with such caring parents who have given me full freedom

to do whatever I wish and have always supported me in my decisions. I extend

my deepest gratitude to my parents, my sister for their invaluable love, affection,

encouragement and support. Ankush Pankaj Desai

x

Abstract

On-board computers are key elements in most embedded applications. In space

systems, the requirements from on-board computers become much more stringent.

These added requirements are largely due to the need for reliability, robustness, and

autonomous survival. Of the different important components of a space program,

nanosatellites are fast becoming a useful platform for the design and development

of such high-reliability on-board computer systems. Nanosatellites are ultra low cost

test beds for testing newer technology in space; this ultra low cost is achieved by us-

ing commercial-off-the-shelf devices and designing reliable software with redundancy

and fault tolerance. This thesis describes the design and development of the two

on-board computers used in the nanosatellite JUGNU developed at the Indian Insti-

tute of Technology, Kanpur. An overview of JUGNU is first presented, along with

the requirements of the on-board computers. The design of the on-board computer

software is then discussed. The communication protocol for high-reliability opera-

tion of the command and data handling functions of the on-board computers in the

presence of error prone communication links is next described in detail. Finally, the

various schemes put in place to confer fault tolerance to the system, which enable

its recovery from radiation induced errors or power brownouts, are described.

xi

Chapter 1

Introduction

In the recent past, nanosatellites have opened new avenues of technology. This has

given impetus to the growth of satellite technology in many countries. Academic

institutions along with the corporate world are involved in collaborative research

and development work. Most of the nanosatellite projects are born in universities.

The main benefit of these low cost nanosatellites is that they serve as a test bed for

latest miniaturized technologies.

Typical nano/micro satellite applications include terrain mapping, weather track-

ing, disaster management, low gravity experiments, astronomical studies, global

positioning and geological studies. They are also very useful in scientific research.

Further, they are extensively used in diverse experiments related to satellite commu-

nication, atmospheric studies, low gravity behaviour, earth’s magnetism etc. Various

missions are already under progress equipped with spectrometers, telescopes, mag-

netometers, and a variety of other instrumentation designed by several universities

and companies.

JUGNU is an attempt by Indian Institute of Technology, Kanpur at implement-

1

ing miniaturized space technologies and creating opportunities for learning in the

academic context. The Indian Space Research Organization (ISRO) has helped the

team in meeting with the necessary requirements of the project. JUGNU should

serve as a test bed for the next generation semiconductor and other micro- and

nano-technologies for space. It would also serve as a platform for exploring possibil-

ities of cost-effective space missions. JUGNU is proposed to be placed in low-earth

polar orbit at an altitude of about 700 km by ISRO’s Polar Satellite Launch Vehicle

(PSLV).

Nanosatellite or nanosat name is applied to satellites whose mass lies in between

1kg - 10kg. It has nothing to do with the term nanotechnology. It has almost all

the features of a small satellite but components used in nanosats are in miniaturized

form.

1.1 Mission Objectives Of JUGNU Nanosatellite

The Mission objectives for the JUGNU nanosatellite are:

1. Demonstrate the viability of the nanosatellite platform for future experiments

2. Design and develop a near IR imaging system and test its compression algo-

rithm

3. Develop and evaluate a small form factor GPS receiver for satellite navigation

4. Augment, test, and qualify an indigenously developed MEMS (Micro Elec-

tromechanical Systems) based Inertial Measurement Unit (IMU) for space ap-

plications.

2

5. Transmit a beacon signal on the amateur band that can be received from

anywhere in the world.

1.2 JUGNU: As a Satellite

The high-level design of JUGNU was based on the objectives initially proposed.

JUGNU comprises of nine subsystems - six making up the nanosatellite bus and

three payloads (GPS, IR-Imaging and IMU). Additionally, another system, Ejection

Mechanism, is being designed for the separation of the satellite from the launch vehi-

cle. These sub-systems work in coordination with each other. The brief description

about these subsystems is given below:

Attitude Determination and Control System (ADCS): Attitude Determina-

tion and Control System deals with the position and orientation of the satellite

in space, which is required for maintaining stability and maneuvering for imag-

ing and communications.

On Board Data Handling Computer: On board computer will be the Com-

mand and data handling part of the satellite. It also schedules and controls

the payload operations on the satellite. It acts as the heart and brain of the

satellite for its survival in space environment.

Communication system: Communication system consist of the transmitter, re-

ceiver and beacon on the satellite. For receiving the telemetry data successfully

on ground station and for sending telecommands to the satellite to control its

operation in space the communication system of the satellite should be ex-

tremely reliable.

3

Power System: Power system consists of solar arrays or solar panels joined to a

power management system which takes care of power regulation and transmis-

sion to all parts of satellite.

Thermal Control: We are using passive temperature control on the satellite, to

maintain the temperature of the satellite within specified temperature limits

273K to 313K.

Imaging System - Payload: Perform space based observations of vegetation, by

virtue of its high reflectance in the Near-IR region. This band also helps us to

differentiate between crops and water bodies.

GPS Receiver - Payload: Custom made algorithm to be programmed into the

ARM7 based processor which allows for corrections and improvements to be

made according to our requirements. This will also help in testing of newly

developed correction algorithms on commercially available GPS receivers.

IMU - Payload: An inertial measurement unit uses accelerometers and gyroscopes

to measure the inertial components of a system resulting from motion or vi-

bration. The data can be used to calculate the position and orientation of the

vehicle at any later moment and also to study the vibration characteristics of

the system.

Ejection System: Ejection System is the most crucial system in the sense it is

the interface between the satellite and the rocket. It will eject the satellite in

space on getting signal from the rocket.

The Ground Station for control and monitoring of the satellite has been set up

at Indian Institute Technology, Kanpur. The telemetry data (for health monitoring)

4

Figure 1.1: Subsystems of JUGNU nanosatellite

5

collected for all the subsystems at ground station will validate the performance of the

sensors and the miniaturized technology in the satellite subsystems. Experiments

related to payloads: GPS, Imaging and IMU, will demonstrate the performance of

the hardware and algorithms used in their design. Images collected will also be useful

in studying the vegetation and the water bodies. Other image related applications

are also being envisaged.

The satellite design is mostly indigenous. For the most part, non-space grade,

commercial-off-the-shelf (COTS) components are used to keep the cost low. In

a nano-satellite, there are very stringent specifications for the weight and size of

the individual subsystems. Hence, the main technical challenge in nano-satellite

development is to design the subsystems fitting the specified dimensions without

compromising on their performance.

The design of JUGNU is compatible with the CubeSat standards proposed by

California Polytechnic State University, San Luis Obispo [1] and Stanford Univer-

sity’s Space Systems Development Lab [2]. This allows the use of COTS (Commercial-

off-the-shelf) components with space heritage, and ensures continued compatibility

of the hardware designed with international standards, for use in future missions.

The satellite consists of various Printed Circuit Boards (PCBs). All the compo-

nents are mounted on these PCBs in a manner that they are compatible with the

3U-Cubesat structure procured from Pumpkin Inc [3].

1.3 On Board Computers for JUGNU

JUGNU is capable of autonomous operation, which implies that it does not require

intervention from the ground station for its basic survival. Based on the requirements

6

with respect to the operation of the payloads, the ground station can send commands

to the satellite. In order to achieve this level of autonomy, on board computers

has been programmed to operate under various pre-defined modes. Each mode of

operation represents satellite’s subsystems in a specific state.

In addition to the autonomous survival of the satellite, the software and hardware

designs of on board computers allow considerable flexibility to the system config-

uration. This configuration can be controlled from the ground station. Several

payload operations can be controlled from the ground station. Sub-systems can be

selectively disabled and the processors can also be reprogrammed from the ground

station. As was mentioned initially, commercial-off-the-shelf components are used

on the satellite its essential that design of on board computers is robust and tolerant

to single point failures.

1.4 Problem Description

In this thesis we tried to incorporate as many features on OBC, to make it efficient,

reliable and tolerant. We used open source softwares like µCOS [4, 5] and EFSL

filesystem [6] which are very widely used in embedded industry, on our indigenously

develop board. Commercially available space proven software like Salvo Pro [3, 7]

and EFFS-THIN [8] are also used. We also implemented software fault tolerance

techniques like triple modular redundancy, check point based recovery for increasing

the reliability of software of on board computers in space. Communication protocol

used on JUGNU nanosatellite is suitable for Low Earth Orbits (LEO) and has salient

features like variable packet length and variable baud rate. Downlink protocol is

designed so as to provide high channel utilization.

7

Unlike conventional satellites which have a large number of redundancy for data

handling and control system, on board computers of JUGNU has minimal redun-

dancies at component level. Some redundancy is maintained at the functional level

and efforts are made to achieve single point failure tolerant design using on board

computer of the satellite.

1.5 Layout of the thesis

This thesis is organized as follows. In Chapter 2, we describe the software and

hardware specifications of on board computers. In Chapter 3, we present the soft-

ware requirements and design of an on board computer for nanosatellite. Chapter 4

describes the communication protocol designed for JUGNU, various features im-

plemented for reliability and high throughput are described. Chapter 5 presents

the software fault tolerance techniques implemented to increase the reliability of on

board software. Chapter 6 concludes the thesis giving in a nutshell the contribution

of this thesis.

8

Chapter 2

On Board Computers For JUGNU

Nanosatellites are typically examples of highly integrated and miniaturized embed-

ded systems, and pack a wide variety of hardware and software into an extremely

small package. The associated complexity in the design and implementation of such

systems is well represented in Figure 2.1, which shows the high level schematic, or

the functional block diagram of the JUGNU nanosatellite.

The on-board computers, specifically OBC-1 and OBC-2 in the case of JUGNU,

perform functions in satellites similar to those of the central nervous system in

humans. They interface with the various other subsystems and sensors to ensure the

satellite’s survival. In space parlance, the on-board computers are at the very core of

what is called the ‘Satellite Bus’, which is essentially a minimal system which can be

reused in multiple spacecraft with different payloads. The capability of selectively

reconfiguring the on-board computers in subsequent spacecraft without adversely

affecting the performance of the satellite bus is one of the most important factors

defining the viability of a given satellite bus. With the use of current computing

and embedded technology, this can be achieved in large spacecraft by the use of a

9

Figure 2.1: Block diagram Of JUGNU nanosatellite

10

number of adapters and translators, The ability to meet this requirement is greatly

hindered by the highly integrated nature of nanosatellites, where power, space, and

processor time is at a premium.

The capabilities of the on-board computers dictate the configuration of the rest

of the satellite to a very large extent. It is common in embedded systems to use a

variety of industry-standard communication protocols for interfacing with off-chip

peripherals. In the case of a nanosatellite with a number of complex systems func-

tioning in tandem, there exists a need to interface with the various systems via a

protocol which they support. It is also necessary and to ensure correct data pro-

cessing and flow in a real-time or near-real-time basis. Further, the computational

requirements of various critical satellite bus algorithms, such as those for attitude

determination and control are quite high. They require optimization and careful

scheduling to ensure that they do not interfere with other real-time response re-

quirements on the on-board computer.

The two On-Board Computers perform command and data handling functions,

critical housekeeping and maintenance functions, and a vast amount of bus arbi-

tration. Due to this, there exists a very real requirement for high reliability and

fault tolerance in the software running on these computers. The use of commercial

grade electronics requires the on-board computers to tolerate errors caused by SEUs

(Single Event Upsets) and other forms of radiation damage, power brownout, and

malfunctioning peripherals. In order to evaluate the risks and optimize the chances

of satellite survival, Figure 2.1 was developed. The various blocks shown in the

diagram represent the various subsystems of the satellite. Most of these blocks are

themselves complex units comprising of electronics, software, and multiple sensing

11

and actuating elements. An intricate network of SPI, I2C, and UART connections

are used to make the connections with the various subsystems.

In the figure, the blocks shown in red represent those which form the core of

the nanosatellite bus developed for JUGNU. These systems are involved in essential

housekeeping and maintenance functions, and must be able to recover from seem-

ingly fatal error. OBC-1, the primary flight computer, is tasked with maintaining

the satellite systems at acceptable power and temperature levels. It is based on a

flight computer which has space heritage, and in the absence of more information is

believed to have a lower chance of failure in the space environment.

OBC-2, or the ‘Payload Flight Computer’, is the workhorse of the nanosatellite

bus. It provides the more advanced features of the JUGNU nanosatellite bus, such

as 3-axis stabilization, ground and object tracking, higher bandwidth data handling

and transmission, and in some cases reprogrammability of the payloads. OBC-2 and

the other elements shown in blue are essential for proper operation of the payloads.

Due to this, these elements are also treated with the same kind of reliability anal-

ysis as the red sections. However, slightly greater risk is taken in using previously

unproven technology in space so as to make the nanosatellite bus viable despite the

constraints on it.

The green elements in the diagram are the payloads. These are vastly more

experimental in nature. The failure of any of the green blocks would not effect any

other system in the satellite. It is taking into account the apparent reliability of the

various sections that the on-board computer and its software is designed.

12

2.1 On Board Computer - 1

We are using MSP430 [9, 10] as our master on board computer, the flight module

for OBC-1 is procured from Pumpkin, Inc [3, 11], its a Cubesat Kit flight module

FM430 (REV C) with Pluggable Processor Module A3 (PPM A3) [12]. Till date,

5 CubeSat Kit FM430 flight modules have flown in to space and are functioning

successfully [13]. FM430 is space-proven with high reliability, hence it is used as

OBC-1 which has to perform all the critical health monitoring task on the satellite.

Figure 2.2: CubeSat Kit flight module FM430 (REV C)

2.1.1 Hardware Specifications

Table 2.1: Hardware specification of OBC - 1

Mother Board CubeSat Kit FM430 (Rev B) [14]

Daughter Board Pluggable Processor Module A3 (PPM A3)

with TI’s MSP430F2618 (Rev D) [12]

Table 2.1 continues on next page

13

Table 2.1 continued from previous page

Microcontroller TI’s MSP430F2618 (16 bit, RISC) [9]

Internal RAM 8 KB

Internal Program Flash 116 KB + 256 B

Processor Frequency 1 - 8 Mhz

External flash memory Industrial grade SDCARD of 1 GB size

Internal Modules Watchdog timer - 16 bit

2 - UART modules

4 - SPI modules

2 - I2C modules

1 - ADC(12-Bit)

1 - DAC(Dual 12-Bit)

2 - 16 bit Timer Modules

DMA(3 channels internal DMA)

External RTC M41T81S [15]

2.1.2 Software Specifications

SALVO PRO - RTOS

For real time operation and for scheduling the tasks on OBC-1, we planned to use

a RTOS with minimal memory requirement and high compatibility with FM430.

We obtained licensed version of SALVO PRO from Pumpkin, Inc[3, 7]. Salvo is

the first Real-Time Operating System (RTOS) designed expressly for very-low-cost

embedded systems with severely limited program and data memory. 4+ applications

14

built with Pumpkin’s Salvo Pro RTOS have been launched into space [13].

Salvo is a purely event-driven cooperative multitasking RTOS. Some of the main

features of Salvo PRO are minimal RAM requirement(small stack size), fast context

switching, fast response to interrupts, etc. Since the tasks running on OBC-1 are

mainly periodic tasks with soft deadlines other than the health monitoring task,

cooperative round robin scheduler of Salvo PRO is best suited for OBC-1.

EFFS-THIN Filesystem

File System is a method for storing and organizing files and data to make it easy to

find and access them. External SDCARD is connected to OBC-1 for logging health

monitoring data, telecommand received from ground station, default parameters and

constants which define the state of the satellite, etc. For maintaining all this critical

data on the satellite we ported a minimal embedded filesystem on to the SDCARD.

For the SDCARD connected to OBC-1 we used licensed version of EFFS-THIN

(FAT16) filesystem provided by HCC - embedded [8].

THIN is a highly optimized, reduced footprint version of highly successful FAT

system. This DOS compatible file system is designed for configurations with limited

resources. It works well with the 8051, MSP430 and H8S series MCUs and is suitable

for use with most 8-bit and 16-bit CPUs. On an MSP430 the minimum build of

THIN including an MMC card driver uses less than 800bytes of RAM.

Time required to access SDCARD using filesystem or through direct MMC APIs is

almost the same with minimal overhead, hence we used FAT16 filesystem for data

handling which provides structured way for storing data. Also this feature can be

used during the testing phase of the satellite, logged data and other checkpoint data

written onto the SDCARD during testing can be viewed and analyzed directly by

15

connecting the SDCARD to a laptop or PC with MMC card reader.

Integrated Development Environment for MSP430

The Integrated Development Environment (IDE) chosen for the MSP430 is Cross-

Works from Rowley Associates Limited [16]. It has a powerful debugger, with

multiple breakpoints. CrossWorks for MSP430 sets the standard for Texas Instru-

ments MSP430 development tools. It has an ANSI C compiler, macro assembler,

linker/locator, libraries, core simulator, flash downloader, JTAG debugger. IDE is

very user friendly. EFFS-THIN library available from pumpkin, Inc. is compatible

with Rowley Crossworks.

2.2 On Board Computer - 2

The purpose of using OBC-2 is to have a high end processing device for complex

computational tasks and to provide real time operations. The OBC-2(ARM) board

is designed indigenously by JUGNU team to meet the requirements of satellite.

ARM 7 based Atmels microcontroller AT91SAM7X was chosen for this purpose as

it has been tested to run successfully in space.

2.2.1 Hardware Specifications

Table 2.2: Hardware specification of OBC - 2

Mother Board Indigenously developed

Microcontroller ATMEL’s AT91SAM7X512 (32 bit, RISC)

[17]

Table 2.2 continues on next page

16

Table 2.2 continued from previous page

Internal RAM 128 KBytes of internal SRAM

Internal Program Flash 512 KBytes of High Speed internal flash

Processor Frequency Operating clock of 48MHz through PLL

External flash memory Industrial grade SDCARD of 1 GB size

Internal Modules Watchdog timer - 12 bit

1 - 3 channel 16 bit timer/counter

1 - 20 bit counter with 12 bit interval

2 - UART modules

2 - SPI modules

1 - TWI modules

1 - ADC(10-Bit)

External RTC M41T81S [15]

2.2.2 Software Specifications

We have indigenously developed OBC - 2, hence we tried to make software part of

OBC - 2 as indigenous as possible, we have used open source RTOS and Filesystem

and have ported them on our platform.

µC/OS-2 - RTOS (open source)

µC/OS-II is currently maintained by Micrium Inc. [4] and can be licensed on a per

product or product line basis. Use of the operating system is free for educational non-

commercial use. µC/OS-II is a fully preemptive real time kernel, most commercial

17

Figure 2.3: OBC-2 ARM Board

kernels are preemptive and µC/OS-II is comparable in performance with many of

them. µC/OS-II is written in highly portable ANSI C, with target microprocessor

specific code written in assembly language. Porting µC/OS-II on to SAM7(ARM)

core was thus very easy for us. It is sufficiently robust to meet rigorous safety critical

requirements. It has ROM footprint of 5Kb - 24Kb (scalable). We chose µC/OS-

II over other open source RTOS because it comes with complete source code and

documentation and is currently implemented in a wide array of high level of safety

critical devices including Avionics, medical devices, etc [5].

Embedded Filesystems Library (open source)

We ported the Embedded Filesystems Library [6] to our platform, EFSL is Library

for filesystems intended to be used in embedded projects.The library currently sup-

ports FAT12/16/32 reading & writing on SD-cards, and is easily expandable for use

with other devices on any platform. This library can be used with as little as 1.5

18

kilobyte RAM, however if you have more at your disposal, an infinite amount can be

used as cache memory. The more memory you commit, the better the performance

will be. In order to minimize IO to the hardware 2 caching mechanism are in place

on different layers. The first layer is the IO Manager which does ”dumb” caching of

sectors. This will of course work better if you have RAM to spare. The second level

is higher up in the library, where some tricks are in place to minimize redundant

reading of the FAT table (which is the primary bottleneck of the FAT filesystem,

especially with hardware which has seek times). With this caching policies in place

the speed up obtained is better than direct memory access to the SDCARD.

Integrated Development Environment for ARM

IAR Embedded workbench [18] is being used for programming and debugging codes

on OBC - 2 (ARM). Some of the key features of IAR Embedded Workbench are

: strong debugger with user friendly IDE, RTOS-aware debugging with built-in or

3rd-party plug-ins, plug-ins for µCOS is available which made debugging of RTOS

based application simple, ready-made peripheral register definition files and example

codes provided are helpful in building the application, compatible with J-Link and

J-Trace (hardware debug probes)[19].

19

Chapter 3

Software Design of On Board

Computers

Designing the software of satellite on board computers is done by considering the

functionality of the entire satellite. Performance of the satellite depends upon per-

formance of on board computers; in small/micro satellites there are separate mod-

ules for data handling, telemetry and telecommand handling, payload operation

sequence, control systems etc. But, in the case of nanosatellites all these opera-

tions are performed by a single on board computer. Hence, on board computers for

nanosatellites have to perform many tasks simultaneously, operation of on board

computers decides the mode in which satellite functions. Also in small conventional

satellites redundant devices are used to provide high reliability and long lifetime.

Devices used are space graded and very costly, program and data memory are gen-

erally radiation hardened which is essential for survival of such satellite in space for

longer duration of time even in harsh space environment. But for nanosatellites such

devices cannot be used, main reason for building a nanosatellite is to provide reliable

20

performance using commercial-off-the-shelf (COTS) components. Same reliability

and lifetime cannot be guaranteed for nanosatellites as that for small satellites us-

ing commercial-off-the-shelf components, generally the lifetime of nanosatellites is

around one year. Reliability of commercial-off-the-shelf components is increased by

designing software which can detect temporary failures and take corrective measures.

On board computers for nanosatellite should be capable of performing different task

simultaneously and the software should be such that it can provide reliable and

controlled satellite operation even with commercial-off-the-shelf components.

Software design also consist of creating device drivers for all the devices interfaced

with on board computers. Device drivers are interrupt driven and timeout based.

RTOS is used on both the on board computers for scheduling various task on the

satellite. Task are given priority and scheduled such that none of them cross their

deadline. One of the important factor which is considered in embedded system

software is software fault tolerance, We have taken measures to provide software

fault tolerance on the satellite using redundancies. Following sections provide an

overview of the on board computers software.

3.1 Health Monitoring on Satellite

Health monitoring plays an important role in the survival of the satellite in space.

If the satellite stops working in normal mode then the health status telemetry data

received at ground station can be used for decoding the problem and take the corre-

sponding action by transmitting telecommands. Health status data is also transmit-

ted through beacon. Health monitoring is also essential for the safety of devices in

the satellite, also proper utilization of the available power is essential so that power

21

is reserved for performing critical operations on the satellite (power distribution).

Also maintaining the status of different devices on the satellite (working or dead)

is essential, turning “on” failed devices1 for a long time may drain large current

through the board which can also damage the other interfaced devices.

The different health monitoring components are:

1. Temperature monitoring

2. Power monitoring

3. Device health and performance monitoring

3.1.1 Temperature Monitoring

Temperature sensors are placed on all the critical boards of the satellite. OBC sam-

ples this sensors and monitors the temperature of different boards on the satellite.

If the temperature of a particular board falls below the critical value then the tem-

perature of that part of the satellite is increased by pointing it towards sun using

ADCS. Similarly if the temperature of the board increases above threshold then

power supply to that board is turned “off”. Before turning “on” any of the devices

or boards the temperature value of that board is monitored and the correspond-

ing action is taken thus providing protection against thermal damage. OBC also

maintains a Health table of the satellite which stores the current temperature values

obtained from all the temperature sensors. This health table is updated after every

2 secs.

1Devices can fail because of latch up, burn out, etc.

22

3.1.2 Power Monitoring

Power monitoring involves proper power distribution on the satellite guaranteeing

survival and normal operation of the satellite under different power conditions. For

performing this operation, Power Consumption table is maintained by the satellite

for different devices as well as for different modes of operation of the satellite. Thus

whenever a device is turned “on” by OBC the corresponding entry in the Power

consumption table is compared with the current power available if sufficient power

is available then the device is turned “on”. Also when OBC switches from one mode

to another, the overall power consumption during that mode is compared with the

available power. If available power is less, then the mode switch is not done and

the satellite operates in the current mode until the available power is more than the

required power. Before performing any payload operation power status is checked

and if sufficient power is not available then that payload operation is not performed.

Also whenever a device is turned “on”, current drawn by the device is monitored

initially so that if the device is faulty then it will draw large amount of current which

will be detected and device will be turned “off” immediately. In case of lower power

mode, all the non-critical devices will be turned “off” and OBC will wait for the

power status to rise. Current battery status is transmitted continuously through

beacon.

3.1.3 Device Health and Performance Monitoring

Device health table is maintained on OBC which indicates the status of all the

devices interfaced with it. Device can be in “working” or “reset” or “dead” state.

Device is in “working” state if it is functioning normally, if the device is turned

23

“off” because of temporary failures like Single event latchup(SEL), reconfiguration

needed because of bit flip or faulty behaviour then the device status is initialized to

RESET. Whenever a device in RESET mode is turned “on”, then proper checks are

performed on the device and the device is reconfigured before its status is initialized

to “working”. If the device failed OBC checks like current drawn, register readback,

device interface initialize, etc. then the device status is initialized to ”dead” and

is no longer used for satellite operations. In case if redundancy is maintained on

the satellite for that device then that redundant device is used. For example if the

SDCARD interfaced with OBC fails then the internal flash memory will be used for

logging of critical data and payload operations will be performed depending on the

available internal memory, also if the receiver fails then protocol used for downlink

will switch to broadcasting mode without waiting for ACKs from ground station.

If solar panel failure on one face is detected then the satellite switches to the solar

panel on third face by rotating the satellite by 90◦ using ADCS. Various such counter

actions are implemented on the OBC to maintain the satellite in normal mode even

if certain devices fail during lifetime of the satellite.

3.2 Event Sequencing on Satellite

On board computers being the central controller of the satellite, have to schedule

all the events which includes payload operations, communication window, teleme-

try data formation, etc. All this operations are scheduled on the satellite using

J2-Orbital propagation algorithm[20]. OBC calculates the time at which different

operation are to be performed by passing the target coordinates to orbital propaga-

tion function. Orbital propagation function finds the exact time at which satellite

24

will come exactly above the target location. In the case of Imaging, target location

is the coordinates whose picture is to be taken by the satellite. For communication

window, target location is the coordinates of Indian Institute Technology, Kanpur

ground station. Similarly, GPS and IMU operations are also scheduled using the

orbital propagation algorithm and the coordinates of the satellites when the payload

operation is to be performed. Other than these payload and telemetry operations

which are dependent upon the position of satellite, there are events which needs to

be scheduled periodically irrespective of the position of the satellite like Memory

Check on satellite, running the ScheduleEvent (ScheduleEvent is a function used to

add events into the sequence queue) operation, satellite resets to correct soft-errors

in RAM these events are also scheduled using event sequencer.

Event queue is maintained on both the OBCs, events are added into the queue

with timestamp indicating when these events will occur in the future and should be

serviced by OBC. Events are maintained in the form of structure which has fields in

it like start time, end time, periodic or non-periodic, period and name of the task

which needs to be created to service the event. ScheduleEvent operation is performed

periodically to add events onto the sequencer queue, it runs the orbital propagation

code and finds the timestamp for all the events which needs to be scheduled and

adds them into the queue. Each OBC have a task “Sequencer” running on them

which keeps on looping over this queue and whenever the event timestamp matches

with the current system time, task is created by the sequencer to service that event.

25

3.2.1 Periodic Events

When a periodic event is serviced it is added back into the queue with a timestamp

equal to current time + period of the event. No ScheduleEvent operation is per-

formed for these events as they are periodic, the periodic field in the event structure

is set for such events and the period field is initialized with the periodic time value.

Periodic events does not have any prerequisite operations associated with them. Ex-

ample of such events are Memory Check (for soft error correction on flash), Periodic

satellite resets (for soft error corrections in RAM), ScheduleEvent operation to find

the events to be schedule in current period (in our case the satellite is propagated

by 12 hrs and ScheduleEvent is called every 10 hrs).

3.2.2 Scheduled Events

Scheduled events are ones that are dependent upon the position of the satellite and

instructions received from ground station. These events are added in to queue by us-

ing the orbital propagation method. Once these events are serviced they are removed

from the queue. Also each event has some prerequisites to be performed before the

event can be serviced, for example, if communication window event is to be added

in to the queue then before that events like Make packet, ground station tracking,

Momentum dumping are added into the queue. Thus while scheduling a particular

event, its prerequisite events are also scheduled by ScheduleEvent operation. These

prerequisite events are scheduled depending on their execution time.

26

3.3 Satellite System Time

For the proper functioning of satellite system which includes satellite and ground

station, it is essential that system time maintained is synchronized. Same system

time with minimal delay is essential because telecommands sent and the telemetry

data received are timestamped based on this system time. System time on the

satellite is maintained by using a 32 bit counter, this counter is incremented every

0.02 secs. Hence the time is maintained on the satellite at an accuracy of 20 ms.

OBC-1 and OBC-2 periodically synchronize their system clock. Also each OBC has a

Real Time Clock (RTC) module (M41T81S [15]) connected to it, these RTC modules

have battery backup hence even under low power or power reset situations they will

maintain the satellite system clock. System clock maintained by both the OBCs is

also synchronized and corrected using these RTCs. Also for proper event scheduling

and analysis of timestamped data received at ground station, ground station also

maintains a system clock which is synchronized with the satellite system clock. Each

time the satellite comes in communication window a special time-synchronization

packet is exchanged between the satellite and ground station.

3.4 Tasks List

OBC-1 uses Salvo PRO which has a cooperative priority based scheduler and OBC-2

uses µCOS which has a fully preemptive real time kernel. RTOS is used for providing

real time behaviour on the satellite and scheduling different tasks on the satellite

using the RTOS scheduler. Depending on the operations to be performed on OBC,

these operations are split in to tasks with priorities and scheduled. Figure 3.1 and

27

Figure 3.2 describes the tasks running on OBC-1 and OBC-2 respectively. Tasks

shown in red are critical periodic tasks and are always in the ready queue of the

scheduler. Tasks shown in blue are created and destroyed by the ’Sequencer’ task

depending on the event to be serviced. Tasks shown in green are replaced by its

child task depending on the mode of operation of the satellite for example when

satellite is in detumbling mode ‘Detumbling Task’ runs in place of ADCS Modes.

3.4.1 On Board Computers - 1

Salvo Pro [3, 7] RTOS is used on OBC-1. All the different tasks running on OBC-1

are as described below:

Health Monitoring Task: This task performs the operation described in Sec-

tion 3.1. Its a periodic task and has highest priority. It updates the current

health status of the satellite and depending on the status corrective actions

are taken if required. Periodic time of this task is ≈ 1 minute.

Beacon Update Task: This task periodically updates the health status values to

be transmitted by beacon. It has lowest priority and the periodic time of the

task is ≈ 3 minutes. Beacon is transmitted by using a timer interrupt which

keeps transmitting the updated beacon signal in the background.

Sequencer Task: This task performs the operation as described in Section 3.2.

Its a periodic task with medium priority and periodic time of 2 minutes. It

creates task to service the scheduled events.

Diagnostic Task: This task performs the diagnostic operation on satellite. It mon-

itors the progress of all the tasks and if it finds that a particular task has hung,

28

it restarts that task. Also it does periodic log of subsystem level global data

into SDCARD which can be used for system restore if there is a planned reset.

Period of this task is ≈ 2 minutes.

OBC-2 Synchronize Task: It is a periodic task which communicates with OBC-

2 and exchanges all the critical data required for synchronization of the two

OBCs. Following parameters are synchronized current magnetometer reading,

mode of operation, ADCS mode, system time, health and device status, etc.

The period of this task is ≈ 5 secs.

Communication window Task: This task is created by the ’Sequencer Task’ to

perform the necessary operation when the satellite is in communication win-

dow. It has high priority but the priority is less than that of Health Monitoring

Task. This task runs in the background and services the commands received

from ground station while interrupt driven (foreground) technique is used to

buffer the data received from receiver. If a packet is successfully received (CRC

is valid) only then it is retrieved from the buffered and serviced by the com-

munication window task. ACKs received from ground station are immediately

forwarded to OBC-2. This task synchronizes the phase of communication win-

dow with OBC-2, both OBC-1 and OBC-2 have Communication window task

running on them. Both these task run in the same mode and successfully

execute the communication protocol.

ADCS Modes: Depending on the mode of operation of ADCS corresponding task

is created and put into ready queue either by OBC-2 synchronization task or

the Sequencer task. Previous task is replaced by the new task using RTOS

29

APIs. Only one of the ADCS Tasks run at any given instant of time. Each

task perform separate set of operations and different devices are involved in

those operations for example for Maneuvering mode magnetometer and reac-

tion wheels are involved while in momentum dumping mode reaction wheels,

magnetometer and torquer coils are involved.

Memory Check Task: This task performs memory check on the internal program

flash of the OBC. If CRC check fails, which indicates that there is a bit flip

in program memory then TMR is implemented on that block of memory in

flash and the program memory is restored to correct state. This is a periodic

task and the period of task is ≈ 2 hrs. This task also performs TMR on the

filesystem and on Image of code stored on SDCARD.

30

Figure 3.1: Tasks scheduled on OBC - 1

31

3.4.2 On Board Computers - 2

µC/OS-2 [4] is used as RTOS on OBC-2. All the different tasks running on OBC-2

are as described below:

Payload Operation Task: This task is created by the sequencer task, any one

of the payload operation task is scheduled at any instant of time. This task

performs all the payload control related operations right from turning the

payload device “on” to receiving the log data and storing it onto SDCARD

and turning the payload device “off”. It has high priority.

Make Packet Task: This task is scheduled by ’Sequencer Task’, it creates packets

from the RAW data on SDCARD and stores them in to a separate file on

SDCARD. It also reads the health log data stored on OBC-1 converts them

into packets and stores them in critical data transmission file on SDCARD.

Communication window Task: This task is created by the ’Sequencer Task’ to

perform the necessary operation when the satellite is in communication win-

dow. It has high priority but the priority is less than that of Health Monitoring

Task. This task retrieves packets from the buffer and appends header to it

and sends it serially to the transmitter. Downlink communication protocol

is implemented in this task, ACK received from OBC-1 are piggybacked and

transmitted to ground station. This task runs synchronously with communi-

cation window task of OBC-1.

ADCS Modes: Depending on the mode of operation of ADCS corresponding task

is created and put into ready queue by the Sequencer task or diagnostic task.

Previous task is replaced by the new task using RTOS APIs. Only one of the

32

ADCS Tasks run at any given instant of time. Each task perform separate

set of operations and different devices are involved in those operations for

example for Attitude estimation task only reaction wheels and magnetometer

are involved while for momentum dumping reaction wheels, magnetometer

and torquer coils are involved. Normally attitude estimation task runs in the

background with medium priority and periodic time of the task is ≈ 4 secs.

Operations performed by ADCS tasks on OBC-1 and OBC-2 are different as

devices controlled by these tasks are different. OBC-1 ADCS task mainly

controls the magnetometer and torquer coils while OBC-2 ADCS task does all

the computational job and controls the reaction wheels driver.

Health Monitoring Task, Memory Check Task, Sequencer Task and Diagnostic Task

are similar to those on OBC-1.

33

Figure 3.2: Tasks scheduled on OBC - 2

34

Chapter 4

Communication System for

JUGNU

For the success of any satellite mission, one of the important mission requirement

is the success of communication system of the satellite which consists of RF system

and the communication protocol implementation.

The communication RF system starts with the link budget analysis which in-

cludes analysis of losses suffered by a signal and the noise that gets added to it

during propagation as well as due to different devices in the system chain. A decent

margin is aimed over the targeted BER for a particular frequency choice, keeping

the constraints on transmitted power, receiver sensitivity, antenna gain realization,

etc. in mind. Figure 4.1 describes the basics of the communication subsystem with

the specifications in Table 4.1. Objective of the communication subsystem of the

satellite is to provide the best link margin possible and also under the given variable

link performance, provide maximum throughput along with data-reliability.

35

4.1 Communication Link Specifications

Table 4.1 below describes specifications of the uplink, telemetry and beacon for

Nanosatellite JUGNU. The link budget has been calculated for 10◦ elevation when

the satellite is at it’s maximum slant range from the ground station.

Table 4.1: Specifications for uplink, telemetry and beacon.

Parameters Uplink Telemetry Beacon

Frequency 145.92MHz 437.505 MHz 437.275 MHz

Transmit power 20W 1W 50mW

Modulation FSK FSK ASK

Data Rate (bps) 1200 2400/4800/9600 1 12

Targeted BER 0.0001 0.0001 0.0001

GS antenna gains 12dB 18dB 18dB

Satellite antenna gain -5dB -5dB -5dB

Basic block diagram of entire Communication system of the JUGNU Nanosatellite

is given in Figure 4.1:

4.2 Introduction to Communication System

JUGNU communication system is composed of three major units Telecommand

Uplink, Telemetry downlink, Beacon downlink.

1Variable adaptive baud-rate feature is used on the satellite to provide reliable data transfer

36

Figure 4.1: Block diagram of communication subsystem.

37

4.2.1 Telecommand Uplink

Uplink refers to the telecommands being transmitted by ground station to satellite.

The uplink includes commands that will guide the satellite to perform certain op-

erations as well as transmit acknowledgements to satellite in response to the data

received at ground station. In any communication system for satellites, the uplink

must be designed as efficiently as possible because at times it may be necessary to

completely shutdown/reset the satellite by sending a telecommand to it or control

the operation or performance of various devices on the satellite. So, data reliability

and correct telecommand processing is important.

The power that is transmitted from the ground station is generally in control of

the ground station controller but it is intended to make the uplink less susceptible

to path loss; hence, selecting low frequencies and low baud rate than the downlink

is common choice.

4.2.2 Telemetry Downlink

It refers to the payload data and the data corresponding to the health status of

different sub-systems of the satellite being sent by the satellite to the ground station.

Downlink is very important so that the ground station knows the exact status of the

satellite through its detailed critical health data being received. Also the mission of

the satellite highly depends on the performance and success of the payloads which

can be verified only if the payload telemetry data is successfully received at ground

station and analyzed. Hence, the downlink protocol should be such that maximum

data can be received at ground station with maximum channel throughput also

guaranteeing the reliability of the data received.

38

It is intended to design the downlink so that minimum noise gets added and the

packets are obtained with minimum distortions. At higher frequencies the galactic

noise is quiet low; hence, the spacecraft added noise is less. However, at the ground

station one can boost up the signal using low noise amplifiers at the receiver front

end that themselves add less noise. Hence, it is a common practice to keep downlink

frequency higher than the uplink. Also one of the mission objective is data downlink

rate of 9600 bps should be possible during communication.

4.2.3 Beacon Downlink

This is designed as the most reliable system in the communication subsystem. It

usually consists of satellite’s call-sign which is the unique identification of the satel-

lite. If uplink and downlink fail for some reason then the only way to know that

the satellite is still in the orbit is the beacon signal. Usually the beacon signal is

accompanied by a general health status of the satellite. The beacon system design

may include redundancies if necessary and it is intended to keep it as a separate

unit not fully controlled by the on board computer. Beacon is always “on” after

separation, and continuously transmits the call sign as well as the encoded satellite

health status. To transmit amateur radio beacon signal all over the world is one of

the mission objectives of the satellite.

4.2.4 Protocol Design

While designing the communication protocol for JUGNU Nanosatellite, some of the

important points that were considered are :

1. JUGNU is a low earth orbit (LEO) satellite, hence have the property of pe-

39

riodic visibility over ground station. Because of this periodic nature, link

management and ground station tracking play an important role in the per-

formance of the communication protocol.

2. Limited power generated on the satellite. Computational power limitation on

the satellite.

3. Providing reliable data communication with best possible channel utilization.

4.3 Communication System Block Diagram

Figure 4.2: Block Diagram of the satellite communication system

The function block diagram of the communication system is as shown in Fig-

ure 4.2. The satellite has two on board computers, OBC-1 (TI MSP430 [9]) and

OBC-2 (AT91SAM7X [17]). From the specifications given in Table 2.2, OBC-2 is

computationally more powerful than OBC-1. Ground station consist of one server

PC having sufficiently high computational power and memory.

40

4.3.1 Ground Station

Transmitter: Ground station uses the same transmitter module as on satellite

(CC1070 [21]). Transmitter is interfaced with the server PC using a AT-

MEGA8 [22] microcontroller. ATMEGA8 [22] is used because there is no need

for a faster and complex micro-controller, since it is only used as a parallel to

serial converter.

Receiver: Ground station uses the same receiver module as on satellite (ADF7020

[23]). Interfacing of the receiver with server PC is same as that of transmitter.

Beacon: Beacon signals are decoded at the ground station is done using Kenwood

transceiver whose serial output is directly connected to the server PC.

Entire communication protocol is being implemented on the server machine which

has very high computational power so that the memory and timing and computation

constraints are nearly eliminated. Two separate process will be running on the server

PC for transmitter and receiver operation. Shared memory concept is used for Inter

Process Communication(IPC) between the two process. There is a beacon process

which will continuously decode the beacon signal received and display the decoded

signal on Ground station (GS). The GS server has a GUI which displays the current

status of the satellite along with payload data received from the satellite.

4.3.2 Satellite Communication System

Transmitter: Transmitter module (CC1070 [21]) is connected to OBC-2 on the

satellite. SD-CARD is connected to OBC-2 which can be used for storing

the data packets to be transmitted to ground station. Since OBC - 2 has

41

comparatively higher computational power (48Mhz, 32-bit RISC, 512KB flash)

one can implement more complex protocol which can improve the throughput

efficiency of the satellite downlink.

Receiver: Receiver module (ADF7020 [23]) is connected to OBC-1 on the satel-

lite. SD-CARD is connected to OBC-1 which can be used to store the tele-

commands received from GS. These commands are processed after the satellite

is out of communication window. Since OBC-1 (8Mhz, 16-bit RISC, 128KB

flash) is comparatively slower, uplink protocol should be designed such that

minimal computation is done at the receiver end.

Beacon: Beacon module (MAX1472 [24]) is connected to OBC-1 on the satellite,

since OBC-1 is the reliable and space proven of the two on board computers.

Health data will be transmitted along with call-sign through the beacon signal.

Receiver and beacon are connected to OBC-1 because even if the transmitter on

OBC-2 fails, satellite health data can be received from beacon and satellite can be

controlled through tele-commands.

4.4 Communication Window

JUGNU is a LEO satellite with orbital height of ≈ 700 km. LEO satellites have this

property of periodic visibility, hence are visible above the ground station only for a

limited period of time. The time period during which the satellite is visible above the

ground station is called Communication Window of the satellite. For calculating the

communication window of the satellite we have considered the satellite to be visible

when it is in the cone above Indian Institute Technology, Kanpur with conical angle

42

of 75◦.

Communication with the satellite can be established even before it is inside

the 75◦ cone, but for performance, safety margin reasons and calculating the time

during which satellite can successfully communicate with ground station with best

link margin, we have considered the 75◦ cone only.

We carried out simulations for calculating the average duration of the communi-

cation window. Communication window results are required for the protocol imple-

mentation so that the time available for communication with the ground station is

known and the size of data packet and the information that can be communicated in

one day can be calculated and tested. The simulation code developed calculates the

communication window of the satellite orbit for a 75◦ cone above Kanpur (Latitude:

26.46667; Longitude: 80.35). The satellite will be placed in a sun-synchronous orbit

around the Earth. The calculations have been done for the below mentioned orbital

parameters Table 4.2 and we do not expect much changes in the results even if the

parameters are varied slightly and/or the launch date/time is changed.

Table 4.2: Orbital parameters

Parameter Value

a (semi-major axis) 700 km

e (eccentricity) 0.0013

inc 98.186172 deg

Date of launch 15-AUG-2010

Time of launch 1030 hrs

Time period 5926.39 seconds (≈ 5927)

43

4.4.1 Simulation Results

Figure 4.3: Communication window simulation results

Figure 4.4: Communication window simulation results

Figure 4.4 shows the plot of length of communication window (time) vs. orbit

number considering the initial orbital parameters shown in Table 4.2. From the

simulation results shown in Figure 4.3 and Figure 4.4 obtained by propagating the

satellite position using J2-orbital propagation algorithm we can deduce the following

conclusions:

44

1. Satellite orbits around the earth approximately 15 times per day.

2. Satellite will be visible above the ground station (considering the 75◦ visibility

cone) for 3 orbits per day on an average.

3. Some calculations:

(a) Maximum communication window size is 475 secs

(b) Minimum communication window size is 5 secs

(c) Average communication window size is 337 secs

(d) Standard Deviation of the communication window size is 124 secs.

4. From the graph shown in figure 4.4 we can see that out of 15 orbits per day

the satellite is visible over the ground station approximately in 3 orbits and

most of this orbits have communication window size more than 200 secs which

is sufficient for transferring the health data along with payload data under

normal communication link performance.

5. Also there are communication windows having size less than 60 secs (5 - 60

secs). In such cases the OBC will detect these windows and since payload data

cannot be transmitted during this window we will transmit only the important

health data.

Depending on the size of communication window following actions will be

taken by on board computers:

(a) If communication window ≤ 60secs then transmit only the health data

from satellite to GS and transmit only the critical telecommands from

GS to satellite.

45

(b) If communication window ≤ 300secs then transmit health data and im-

portant payload data. Priority of the payload data is given in the Ta-

ble 4.3. Payload data will be sent depending on the window size and

priority of the payload data.

Table 4.3: Payload data priority

Payload Data Priority

IMAGE 1

GPS POSITION 2

IMU LOG 3

GPS SATELLITE ACQ 4

IMAGING PARAMETERS 5

ADCS LOG 6

COMMUNICATION LOG 7

(c) If communication window ≥ 300secs then the satellite can transmit all

the health and payload data. Payload data is always transmitted in the

order given in Table 4.3.

4.4.2 Telemetry Data Transfer

From Table 4.3 it can be seen that the average length of the communication window

is ≈ 350secs. As we will see in Section 4.5.6, data will be transmitted by the satellite

in different baud rates. Initially the critical satellite health data will be transmitted

at a lower baud rates of 2400bps and then the payload data will be transmitted at a

46

higher baud rate of 9600bps. Also variable packet length mentioned in Section 4.5.5

feature is being used on the satellite keeping in mind the changing nature of the

communication link. Hence by default, critical data will be transmitted with packet

length of 64 bytes and the payload data will be transmitted with packet length of

200 bytes. Also in Section 4.5.3, we will see that the overhead bytes because of

control information and synchronization bits per packet is ≈ 24 bytes.

We have split the satellite to ground station data transmission in two parts,

critical data transmission and payload data transmission. On an average commu-

nication window size (with the 75 degree cone angle) is about 350 secs but from

the testing of our ground station antennas we have been able to track the satellites

when they are at 5 degree angle with the horizon. Hence we can assume that by the

time satellite comes in the 75 degree communication window, link would have been

established and data transfer protocol can be started.

We split the 350 secs window in to 100 secs and 250 secs phases, assuming that

the critical data will be transmitted during the first 100 secs and the payload data

will be transmitted during the next 250 secs. The table below gives the rough idea

about total data that can be transmitted during an average communication window

with channel efficiency of 60% and overhead bytes per packet being 24 bytes.

Table 4.4: Possible data transfer in one communication window

Data Time Baud Rate Channel Total Data

Duration Utilization

Critical Data 50 secs 2400 bps 60 % 5.635 KB

Payload Data 300 secs 4800 bps 60 % 95.04 KB

Table 4.4 continues on next page

47

Table 4.4 continued from previous page

Data Time Baud Rate Channel Total Data

Duration Utilization

Payload Data 300 secs 9600 bps 60 % 190.08 KB

From Table 4.4, we can transfer ≈ 5.6 KB of critical data and ≈ 190 KB of

payload data in an average communication window. Hence we can transfer all the

critical and payload of the satellite mentioned in Table 4.5 and Table 4.6 under

normal communication link behaviour and in an average communication window.

Table 4.5: Health Status Data

Health Status Data Size

Reset time of the satellite if it was reset in the given

time duration or else a NIL packet

≈ 100 B

In the case of mode switch, reason for mode switch can

be transmitted along with the time stamp. Example

emergency mode, low power mode, etc.

≈ 100 B

Power Log ≈ 500− 700 B

Temperature Log ≈ 500− 700 B

Satellite status like which devices are working fine, sta-

tus of devices

≈ 50 B

Switching ON/OFF time of all the devices (Success /

Failure)

≈ 500− 700B

Table 4.5 continues on next page

48

Table 4.5 continued from previous page

Health Status Data Size

Time synchronization packets ≈ 50 B

Health Status of Solar panels ≈ 100− 300 B

Performance of ADCS Algorithm ≈ 500− 1000 B

Total ≈ 3.5 KB

Table 4.6: Payload and non critical data

Payload and non critical data Size

IMU log data ≈ 10 KB

NIR Images ≈ 130 KB

GPS log data ≈ 10 KB

Communication signal strength related data ≈ 500− 1000 B

All the temperature sensors reading to get temperature

variation in different parts of the satellite

≈ 4000 B

ADCS log data ≈ 4 KB

Total ≈ 160 KB

4.5 Communication Protocol

Communication protocol is a set of rules and procedures for error detection, data

representation, flow control, etc to send information efficiently and reliably over

49

a communication channel. Protocol is designed to ensure communication over a

varying communication channel. JUGNU will be put in to low earth orbit which

have this property of periodic visibility over ground station and also within a pass

the channel performance varies depending on its azimuth and elevation angles.

Communication protocol for JUGNU is being designed keeping in mind this

channel features and the specifications of our communication system. Maximum

channel utilization and reliability is aimed, also considering the computational and

memory constraints on the satellite. For experimental purposes we have also intro-

duced features like variable/adaptive baud rate and variable packet length features

into our protocol. The following sections describe JUGNU communication protocol

in detail.

4.5.1 Communication Protocol Stack

Communication protocol stack is used to split the communication protocol into

different layers which makes understanding the protocol easier and simplifies imple-

mentation of the protocol. JUGNU communication protocol is made up of three

layers basically physical layer, data link layer and network-application layer. These

layers are explained in more details in the following subsections.

Physical Layer

Physical layer is concerned with the following:

Hardware Interfacing: Figure 4.2 shows the detailed block diagram of the com-

munication system of the satellite with all the interfacing details. On the

satellite and the ground station its the responsibility of the physical layer to

50

Figure 4.5: Communication protocol stack

monitor the health and performance of these devices. For example if the de-

vice is wrongly configured then detecting it and reconfiguring it. Further, in

space, devices might latch up and require sudden reset and reconfiguration.

Baud rate: Physical layer is concerned with configuring the internal registers of

the receiver and the transmitter such that they operate at the same baud rate.

Also on the satellite we have implemented adaptive baud rate feature. Hence,

it is the responsibility of the physical layer to change the baud rate when the

corresponding command is received from the above layer.

Synchronization of bits: The physical layer provides bit synchronization between

the transmitter and the receiver such that their clocks are synced and they

use same bit duration and timing. In our case this is attained by sending 48

bits of preamble before each packet as synchronization bits.

51

Data Link Layer

Data link layer is concerned with framing, flow and error control and Automatic

Repeat Request(ARQ) type of protocols to provide smooth and reliable data com-

munication:

Framing: At the transmitter end, data link layer gets data to be sent from the

above layer appends headers, CRC and control bits to it. In our case the data

to be sent is previously logged in SD-CARD (satellite) and in files (GS). Data

link layer retrieves this data, converts them in to packets and stores them in

local memory so that the physical layer can directly access this packets and

transmit them during the communication window.

Flow and Error Control: Acknowledgement based technique is being used to

provide flow control and error control for the data transmission in both up-

link and downlink. We have used Go-Back-N(GBN) ARQ for the uplink pro-

tocol(Section 4.5.8) and modified checkpoint and negative acknowledgement

based protocol for downlink (Section 4.5.9).

Network and Application Layer

Network and Application layer is concerned with the following:

Tele-Command Handling: Network Layer deals with the tele-command handling

of the communication system, some of them are mentioned below:

• On the satellite, processing the tele-commands received from the ground

station and taking the necessary action.

52

• Depending on the health data received from the satellite on ground sta-

tion, analyzing them and sending the control tele-command for immediate

action on satellite.

• For certain payload operations, uploading the schedule from ground sta-

tion using tele-commands.

Payload Data Handling: Maintaining the payload data on satellite and sending

it in correct format so that they can be interpreted at the ground station.

Communication Window Connection Control: In LEO satellites communica-

tion link management plays a very important role. Network layer monitors the

link and controls the operation of the satellite when in communication window.

Since we are using adaptive packet length and adaptive baud rate features in

our protocol it is the responsibility of the network layer to take the control

actions depending on the link performance.

4.5.2 Error Control

Forward error correcting schemes can be used to correct the errors in packets thus

avoiding the retransmissions; but, these schemes are useful only if propagation delay

is long and computation power is not a concern as such schemes come with lots of

redundancy overhead and encoding decoding computation overhead. However in

our case because of small negligible RTT (Round Trip Time) and low computation

power, highly reliable data link control protocol with ARQ which uses only error

detection is used.

Error control on the satellite is implemented by using Automatic Repeat Request

method. Packets with error are just discarded at the receiver end in the uplink

53

protocol while a NACK is sent corresponding to that packet in the case of downlink

protocol. Error detection is done using 32 - bit CRC (Cyclic Redundancy Check)

which is applied on the data-length as well as the data-region part of the packet

(packet format is described in Section 4.5.3). Table Method for calculating CRC is

being used, application report [25] from Texas Instruments is used as reference for

implementation.

4.5.3 Packet Formats

Two types of frames are used in the protocol implementation, C-frame (Control

frame) and I-Frame (Information frame).

Packet Format for Control Command Frames

C-frames are the frames used for link management and critical satellite control; these

frames are also used as control frames in DLC protocol. Control frames are basically

used during operations like RLIP, Change baud rate process, Link closure process,

etc.Since these frames are control frames, there are no sequence number and ACK

fields.

Figure 4.6: Control command packet format

Preamble: Its a 48 bit sequence transmitted before each packet to synchronize the

receiver clock with the transmitter clock. 6 times “0xAA” is being transmitted.

54

SWD: Sync Word Detect is special sequence of bits transmitted before each packet

indicating the start of a new packet. SWD is a special bit pattern which should

not repeat in any other part of the packet; hence, Bit Stuffing2 is being used.

On reception of a SWD receiver generates a pulse on one of its pin which is

used by the micro-controller to detect arrival of a new packet. We have used

0xACF0 as our SWD.

Flag: Flag is used to distinguish between C-frames and I-frames. Flag is trans-

mitted just as a delay before actual packet transmission starts. This is being

added as a padding so that even if the micro-controller fails to respond to the

SWD immediately (8 bit time delay flag) it would still get ready to receive

the actual data packet to follow. “0x0F” is transmitted as flag in the case of

C-frames.

CMD ID: Each control command has a ID corresponding to it which is used to

process the command received.

Length: Length of the control-info field in bytes.

Control-Info: Control commands may carry control information with them, for

example CP packets have error list in the control info field.

Packet Format for Uplink and Downlink

Difference between packet formats of the uplink and downlink protocol is the ACK-

Num field. In the case of uplink protocol we are using piggy backing [26] technique

for sending the acknowledgements to ground station. Hence the acknowledgements

2Bit Stuffing: Bit stuffing is the insertion of extra bits in the packet so that the receiver does

not mistake the pattern 0xACF0 as a SWD when it is occurring in fields other than SWD field.

55

Figure 4.7: Satellite to GS packet format

Figure 4.8: Ground station to satellite packet format

are piggy backed in the packets transmitted to ground station from satellite. In the

case of downlink protocol piggy backing is not used. Instead, separate Check Point

packets are transmitted which provide periodic Negative Acknowledgements.

Preamble: Its a 48 bit sequence transmitted before each packet to synchronize the

receiver clock with the transmitter clock. 6 times “0xAA” is being transmitted.

SWD: Sync Word Detect is special sequence of bits transmitted before each packet

indicating the start of a new packet. SWD is a special bit pattern which

should not repeat in any other part of the packet hence bit stuffing is being

used. On reception of a SWD receiver generates a pulse on one of its pin which

is used by the micro-controller to detect arrival of a new packet. We have used

“0xACF0” as our SWD.

Flag: Flag is used to distinguish between C-frames and I-frames. Flag is trans-

mitted just as a delay before actual packet transmission starts. This is being

56

added as a padding so that even if the micro-controller fails to respond to the

SWD immediately (8 bit time delay flag) it would still get ready to receive

the actual data packet to follow. “0x00” is transmitted as flag in the case of

I-frames.

Seq-Num: Sequence number of the packet transmitted. Used for in sequence as-

sembly of packets and data reliability.

ACK-Num: Sequence number of the last successfully received packet from Ground

Station to satellite is being sent in the form of cumulative positive acknowl-

edgement.

Data-Length: Length of the data region to follow (number of bytes in the data

region).

Data-Region: Actual data that needs to be transmitted from satellite to ground

station.

CRC - 32: 32 bit CRC is used for error detection. CRC is calculated on the Data-

Length + Data-Region part of the packet.

From the packet formats given in Figure 4.7 and in Figure 4.8 we can see that

one packet transmission involves transmitting additional bytes along with the actual

data that needs to be transmitted. These additional bytes act as an overhead when

transmitting data in the form of packets. Overhead bytes play an important role

while determining the packet length.

57

Table 4.7: Packet overhead bytes

Overhead Fields Bytes

Preamble 6

SWD 2

Flag 1

Seq-Num 1

ACK-Num 1

Data Length 1

CRC -32 4

Control Info in data region 4

Total 20

4.5.4 Beacon

Beacon Signal

Beacon signal will be sent by satellite in the form of Morse code. This beacon signal

will be received by all the amateur radio communities all over the world. Health

status data of the satellite in quantized form is also by the satellite through beacon

signal.

Morse Code Details

Morse code is a type of encoding technique used for transmitting information in

the form of rhythm [27]. The Morse code uses a standard form of long and short

58

elements that represent alphabets, numbers and some special characters. They are

commonly referred to as “dots” and “dashes” or “dits” and “dahs”. Time elapsed

between the signals conveyed plays an important role in determining the meaning

of the code.

Spacing and Length of Signals: 1. A dot (.) is the basic unit being transmit-

ted. Signal is being transmitted during this interval time.

2. A dash (-) is equal to three consecutive dots (.).

3. The space between the signals forming the same letter is equal to one dot

and no signal is transmitted during this interval.

4. The space between two letters is equal to three dots and no signal is

transmitted during this interval.

Frequency Details

Beacon signal will be transmitted at a frequency of 12 units3/sec.

Beacon Packet Format

Figure 4.9: Beacon packet format

Call Sign: Call sign ”unknown”4 will be transmitted by satellite in Morse code.

3One unit is considered to be equal to one dot(.)
4To be given by IARU (International Amateur Radio Union)

59

Size of call sign is ‘X’ characters. Each satellite has unique call sign, its a

combination of letters used to identify a broadcasting station.

Power-Board 1: Power status of the battery pack - 1 will be transmitted. This

value will be quantized into 26 different states i.e. character ‘A’ - ‘Z’.

Power-Board 2: Power status of the battery pack - 2 will be transmitted. This

value will be quantized into 26 different states i.e. character ‘A’ - ‘Z’.

Table 4.8: Power status quantized values

Power Range(Watt-Hr) Symbol Used

0 - 0.65 A

0.65 - 1.3 B

1.3 - 1.95 C

1.95 - 2.6 D

2.6 - 3.25 E

3.25 - 3.9 F

3.9 - 4.55 G

4.55 - 5.2 H

5.2 - 5.85 I

5.85 - 6.5 J

6.5 - 7.15 K

7.15 - 7.8 L

7.8 - 8.45 M

8.45 - 9.1 N

Table 4.8 continues on next page

60

Table 4.8 continued from previous page

Power Range(Watt-Hr) Symbol Used

9.1 - 9.75 O

9.75 - 10.4 P

10.4 - 11.05 Q

11.05 - 11.7 R

11.7 - 12.35 S

12.35 - 13 T

13 - 13.65 U

13.65 - 14.3 V

14.3 - 14.95 W

14.95 - 15.6 X

15.6 - 16.25 Y

16.25 - 16.9 Z

Temperature Structure: Average value of the structure temperature will be trans-

mitted. There are two temperature sensors on the structure at opposite faces

such that atleast one of them will be facing the sun at any instant of time.

Average value of these two temperature sensors will be quantized into 26 states

represented by characters ‘A’ - ‘Z’.

Temperature Internal: Average value of the temperature of all the PCBs will be

transmitted which will give information regarding the internal temperature of

the satellite. There are temperature sensors on each of the critical boards of

61

the satellite. This average value will be quantized into 26 states represented

by characters ‘A’ - ‘Z’.

Table 4.9: Temperature quantized values

Temperature Range(◦C) Symbol Used

-20 - -17 A

-17 - -14 B

-14 - -11 C

-11 - -8 D

-8 - -5 E

-5 - -2 F

-2 - 1 G

1 - 4 H

4 - 7 I

7 - 10 J

10 - 13 K

13 - 16 L

16 - 19 M

19 - 22 N

22 - 25 O

25 - 28 P

28 - 31 Q

31 - 34 R

34 - 37 S

Table 4.9 continues on next page

62

Table 4.9 continued from previous page

Temperature Range(◦C) Symbol Used

37 - 40 T

40 - 43 U

43 - 46 V

46 - 49 W

49 - 52 X

52 - 55 Y

55 - 58 Z

Device Status: Status of all the critical devices on the satellite is being transmit-

ted. Status of all the devices will be transmitted using 12 bit hexadecimal

value. Three characters will be transmitted to represent the 12 bits and each

device will be represented by a bit position. ‘1’ received at that bit position

means that the device is working fine and is “on” while a ‘0’ being received

means that the device is “off” or not responding properly. So a failure of de-

vice can be detected by checking the mode of the satellite and if in that mode

that particular device should have been “on” and is not, indicates that the

device has failed to respond. Status of the solar panels is represented using 2

bits; hence, it can be divided in to 4 different states or levels of degradation.

Table 4.10: Devices list

Device Bit

Table 4.10 continues on next page

63

Table 4.10 continued from previous page

Device Bit

Reaction Wheels Bit 0

Torque Coils Bit 1

Solar Panels Bit 2

Solar Panels Bit 3

Imaging Bit 4

Magnetometer Bit 5

GPS Bit 6

IMU Bit 7

Receiver Bit 8

Transmitter Bit 9

Temperature Sensors Bit 10

OBC -2 Bit 11

Mode: Satellite will operate in different modes depending on the status of the

different subsystems of the satellite.

Table 4.11: Satellite modes

Satellite Modes Symbol Used

Emergency Mode A

Communication Tracking Mode B

Power Save (Shadow Region) Mode C

Table 4.11 continues on next page

64

Table 4.11 continued from previous page

Satellite Modes Symbol Used

Imaging Mode D

Sun Pointing Idling Mode E

Maneuvering Mode F

Initialization Mode G

Detumbling Mode H

Momentum Dumping Mode I

Satellite Cooling Mode J

Reserved K - Z

B Dot Value: Magnitude of the B Dot vector will be transmitted so that the an-

gular velocity (stability) of the satellite can be determined at ground station.

B Dot values will be quantized and sent using 2 characters. Let rev15 and

rev26 be the two characters received, they can take values from ‘A’ - ‘Z’. Then

the quantized B Dot value is obtained by using the below expression.

Quantized Bdot = (rev1− ‘A′)× 26 + (rev2− ‘A′) (4.1)

Maximum value of magnitude of the bdot vector received is ’ZZ’ and minimum

value is ‘AA’. ‘ZZ’ maps to value “X” gauss/s7 and ‘AA’ maps to value “Y”

gauss/s8. Exact bdot value is obtained by using the following expression.

Approx Bdot = Quantized Bdot× (X − Y)÷ 676 (4.2)

5rev1 is the first character of B Bot value received
6rev2 is the second character of B Bot value received
7X = 1.5 gauss/s (maximum value for the satellite(tumbling))
8Y = 0 gauss/s (minimum value for the satellite(stable)

65

4.5.5 Variable Packet Length in Downlink Protocol

In LEO satellites, communication channel is subject to a lots of variations with

time because of which the data link layer frame length plays an important role in

the throughput efficiency of the channel. Determination of optimal frame length

and the concept of variable frame length was introduced by Eung-In KIM, Jung-

Ryun LEE and Dong-Ho CHO [28], proving that if the frame length of the data

link layer is chosen adaptively in response to changes in the dynamically varying

channel, maximum throughput could be achieved under both noisy and non-noisy

error conditions.

We carried out simulations to determine the optimal length of packets for our

satellite considering the varying nature of communication link at different elevation

angles above earth. Hence satellite uses different packet lengths during different

phases of the communication window.

Determination of Packet Length

The packet size has a lot of effect when we consider the Bit Error Rate and the

Transmission Time required to download all the information.

In a clean channel; a long frame has some advantages in terms of quick transmis-

sion because of less Overhead per chunk of information transmitted coupled with

less number of packets that needs to be transmitted. But in a channel with less SNR

and high BER, a long packet is more likely to be corrupted, reducing the throughput

drastically and, hence, a smaller packet size is required and advised.

So a very small packet will increase the overall number of overhead bits to be

transferred (not good for clean or nearly clean channels) and a large packet will

66

require retransmission of packets since the probability of the packet being corrupted

is very high; hence, a calculation for optimum Packet Size in different conditions is

a must.

Simulation Channel’s Model

The following assumptions have been made during the simulation of channel to

estimate the Optimum Packet Size:

1. The calculations have been made for a baud rate of 10000bps.

2. Noise is considered to be AWGN (Additive white Gaussian Noise) noise.

3. Expected Worst SNR = 18dB.

BER Simulation Results

Figure 4.10: BER vs SNR

A simulation is done for various SNR. Each time, an analog BFSK signal is

transmitted and decoded using correlated receiver. Figure 4.10 shows the plot of

BER verses SNR for the given channel model. Results prove that improving the

67

SNR of the link reduces the BER, better the SNR less number of erroneous packets

received. One of the ways of improving the SNR for a given transmitted power is

by reducing the baud rate of the signal transmitted (Section 4.5.6).

Error Free Packets simulation

Figure 4.11: Error free packets Vs packet length

A Simulation is done for various SNR to observe number of error free packets

versus packet length. Figure 4.11 shows the result of Error free packets versus

Packet length for different SNR values. We can observe that at lower SNR value if

the packet length is increased, number of error free packets received slowly drops to

zero. Similarly at good SNR values packet length does not have any effect on the

number of error free packets received.

68

Packet Length for BER = 1E-4

When the satellite is inside the communication window and in good visibility region,

the expected BER will be around 1E-4 or better. For transmission of 20kB of data;

the calculated time for different frame sizes and 1E-4 BER values is as follows:

Table 4.12: 20 KB data transmission time for BER = 1E-4

Frame Data No. Of Total Packets Duration

Length Length Packets Transmitted

64B 32B 6250 6586 337.203s

96B 64B 3125 3384 259.891s

160B 128B 1563 1792 229.376s

192B 160B 1250 1475 226.560s

Figure 4.12: Time vs packet length for BER=1e-4

69

Figure 4.12 shows the time required to successfully transmit 20KB data for variable

packet length at BER of 1E-4. We can observe that the transmission time increases

as the packet length increases, indicating the increase in number of retransmissions.

Minimum Transmission Time = 226s

Packet Length = 1622 bits

Packet Size if BER = 1E-3

The BER might be a bit higher for sometime when the satellite is at lower elevation

angles i.e., it is entering or exiting the communication window. Hence a compara-

tively smaller packet size will be required for such cases. The simulation of such a

case presented the following graph.

For transmission of 20kB of data; the calculated time for different frame sizes is

as follows:

Table 4.13: 20 KB data transmission time for BER = 1E-3

Frame Data No. Of Total Packets Duration

Length Length Packets Transmitted

64B=512 32B 6250 12800 655.4

96B=768 64B 3125 13453 1033.2

Figure 4.13 shows the time required to successfully transmit 20KB data for variable

packet length at BER of 1E-3. We can observe that the transmission time increases

as the packet length increases, indicating the increase in number of retransmissions.

Minimum Transmission Time = 655.0710 secs

70

Figure 4.13: Time vs packet length for BER=1E-3

Packet Length = 505 bits

Packet Size if BER = 5e-4

For transmission of 20kB of data; the calculated time for different frame sizes is as

follows:

Table 4.14: 20 KB data transmission time for BER = 5E-4

Frame Data No. Of Total Packets Duration

Length Length Packets Transmitted

64 Byte 32 Byte 6250 8396 429.9s

96 Byte 64 Byte 3125 5068 389.2s

160 Byte 128 Byte 1563 4332 554.4s

192 Byte 160 Byte 1250 5370 825.3s

71

Figure 4.14: Time vs packet length for BER=5e-4

Figure 4.14 shows the time required to successfully transmit 20KB data for vari-

able packet length at BER of 5E-4. We can observe that the transmission time

increases as the packet length increases indicating the increase in number of re-

transmissions but packet length for minimum transmission time is greater than that

for BER of 1E-3.

Minimum Transmission Time = 387.4519 secs

Packet Length = 720 bits

Conclusion

From the above analysis we can see that the performance of the channel decreases

at lower BER if the packet length is increased. Hence the optimal packet length at

a particular BER is one which takes minimum transmission time for sending 20KB

data with minimum retransmission overhead.

For the case of 1E-4 BER, a packet length of 1622 bits is appropriate and for

1E-3 BER, length of 505 bits is appropriate.

72

Variable Packet Length

In Section 4.5.5 we carried out simulations to determine the optimal packet length

for different BER values.

We can determine the performance of channel on the basis of number of erro-

neous packets received on GS or number of retransmission done by satellite. During

the closing phase of the communication window, GS sends control frame to satel-

lite which has information about number of erroneous packets received during the

current communication window. Using this information performance of the link is

calculated and if it less than LOW BER THRESHOLD then packet length is re-

duced by one level. If the performance is greater than HIGH BER THRESHOLD

then the packet length is increased by one level. In short, the receiver feeds back

BER and burst errors in the communication window to the transmitter and the

transmitter will respond to this feed back by sending data in optimal packet length

in the next pass.

We have not used adaptive packet length feature on our satellite in which de-

pending on the current link performance packet length of the satellite is changed

instantly during the transmission of data. Implementing such a feature on OBC

would require it to have high computational power because when the satellite is in

communication window there are various other critical task running on the OBC - 2.

Hence to reduce the workload during communication window the data to be sent to

ground station during the course of a particular communication window is already

divided and converted in to packets and stored on SD-CARD. The conversion of

data in to packets is done before each communication window and the packet length

used depends on the performance of the link in the previous communication window.

73

Hence we can exploit the fact that the link behaviour in the two consecutive passes

will be nearly same.

By default we have assumed that the value of BER in the initial phase (elevation

angle of 0◦ - 20◦) of the communication window will be 1e-3 and hence the packet

size during this duration will be 512 bits i.e. the critical data will have packet size

of 512 bits. We have also assumed that the satellite will be able to get a BER better

than 1e-4 when its within the 70◦ cone. Hence, the payload data will be transferred

using packet length of 1600 bits.

Table 4.15: Packet length depending on channel performance

Performance in Previous Commu-

nication Window

Critical Data Payload Data

≤ LOW BER THRESHOLD 512 bits 1024 bits

≥ LOW BER THRESHOLD and ≤

HIGH BER THRESHOLD

768 bits 1600 bits

≥ HIGH BER THRESHOLD 1024 bits 2048 bits

Since the critical data will be transmitted during the initial phase of the communi-

cation window when the BER is assumed to be higher, packet length of the critical

telemetry data is smaller. Payload data is transmitted with longer packet length to

reduce the number of packets transmitted and increase the throughput.

74

4.5.6 Variable Baud Rate for Satellite Downlink

As we have noticed in Figure 4.10, as SNR of the link increases BER decreases. And

also BER has a very high impact on the performance of the communication link if

the packet length is fixed. One of the important factors that effect the SNR is the

baud rate of the data transferred.

With every data rate is associated a certain bandwidth for that signal. The

channel must be wide enough to reliably pass through that information, if it is too

wide then we unnecessary waste the available bandwidth of the channel or if it is too

narrow then the information symbols go through Inter Symbol Interference (ISI).

Also due to a certain bandwidth of the channel there is inclusion of Nyquist/thermal

noise proportional to the bandwidth of the channel which degrades the available

SNR at the receiver and consequently the BER becomes worse. However if the

channel is such that it utilizes just optimum bandwidth required to receive the

signal corresponding a certain data rate then by reducing the data rate we can

reduce the noise added and hence improve upon the BER.

Hence, depending on performance of the downlink channel proper baud rates can

be selected. For example during the initial and ending phase of the communication

window when the satellite is at lower elevation angle we will transmit signal at low

baud rates to improve the SNR and also transmit the critical data at low baud

rate so that it is successfully received at ground station. Once the critical data is

transmitted, we will change the baud rate using the below mentioned protocol and

the satellite will try to transmit the payload data at higher baud rates and by this

time the satellite would have definitely come in good visibility region of the ground

station so the SNR will be good enough to support higher baud rates.

75

Baud Rate Change During Communication Window

• Initially when the satellite is at an elevation angle between 0◦ - 10◦, because

of bad link margin and low SNR, the baud rate is maintained at 2400 bps.

• Once the critical data is transmitted, change baud rate process is started to

increase the transmission baud rate to 9600 bps.

• Just before going in to the link closure phase, baud rate is again reduced down

to 2400 bps.

• Whenever there is a LINK FAILURE, C-frames are always transmitted at

2400 bps. By default a LINK FAILURE causes the baud rate to be switched

to 2400 bps.

• If the satellite fails to function at 9600 bps then payload data can be sent at

4800 bps.

• If there is a LINK FAILURE and the satellite is transmitting payload data

then after link reinitialization baud rate is again switched to higher value of

9600 bps.

Performance Improvement

Changing the baud rate improves the SNR of the channel hence plays an important

role when the link is bad and also throughput can be increased by changing the

baud rate depending on the amount of data to be transmitted as well as channel

performance.

76

Satellite Implementation

The commands sent and received during this process are in C-frame format.

Figure 4.15: Change baud rate protocol on satellite

1. Change baud rate process is started by sending CH BR command to GS

by satellite continuously with time interval TIME OUT9 until it receives a

ACK CH BR. After N10 tries the process is marked as FAILED and exits

by sending EXIT CODE to GS. After transmitting EXIT CODE and getting

acknowledgement satellite starts transmitting data at 2400 bps (Default).

9TIME OUT value is dependent on the response time of the channel
10N is a constant between 10 - 50

77

2. Satellite then sends CH BR X11 to GS, indicating the baud rate to which it

has to switch. CH BR X is transmitted continuously with some time interval

TIME OUT until it receives a ACK CH BR X. After N tries the process is

marked FAILED and exits by sending EXIT CODE to GS. After transmitting

EXIT CODE and getting acknowledgement satellite starts transmitting data

at 2400 bps (Default).

3. Satellite then configures the transmitter such that it can send data at new

baud rate X. HELLO-1 command is transmitted to GS in new baud rate with

some time interval TIME OUT until it receives a ACK HELLO-1. After N

tries the process is marked as FAILED and exits by sending EXIT CODE to

GS. After transmitting EXIT CODE and getting acknowledgement satellite

starts transmitting data at 2400 bps (Default).

4. HELLO-2 command is transmitted to GS in new baud rate with some time

interval TIME OUT until it receives a ACK HELLO-2. After N tries the

process is marked as FAILED and exits by sending EXIT CODE to GS. Af-

ter transmitting EXIT CODE and getting acknowledgement satellite starts

transmitting data at 2400 bps (Default).

5. After receiving ACK HELLO-2 satellite is in GO state and resumes the data

link control protocol in new baud rate.

6. Once the satellite transmits EXIT CODE, just to recover the satellite com-

munication from failure mode RLIP is performed.

11X = 2400/4800/9600 bps

78

Ground Station Implementation

The commands sent and received during this process are in C-frame format.

Figure 4.16: Change baud rate protocol on ground station

1. On receiving the CH BR command GS starts sending ACK CH BR command

continuously with some time interval TIME OUT until CH BR X command

is received. After N tries the GS detects FAILURE and configures the receiver

to start receiving at 2400 bps.

2. On receiving the CH BR X command GS starts sending ACK CH BR X com-

79

mand continuously with some time interval TIME OUT until HELLO-1 com-

mand is received. GS configures the receiver to receive data at X baud rate.

After N tries the GS detects FAILURE and configures the receiver to start

receiving at 2400 bps (Default).

3. On receiving the HELLO-1 command GS starts sending ACK HELLO-1 com-

mand continuously with some time interval TIME OUT until HELLO-2 com-

mand is received. After N tries the GS detects FAILURE and configures the

receiver to start receiving at 2400 bps (Default).

4. On receiving the HELLO-2 command GS starts sending ACK HELLO-2 com-

mand continuously with some time interval TIME OUT until I-frame is re-

ceived. After N tries the GS detects FAILURE and configures the receiver to

start receiving at 2400 bps (Default).

5. On receiving the EXIT CODE GS sends ACK EXIT CODE and configures

the receiver to receive data at 2400 bps (Default).

4.5.7 Phases in communication window

Communication Window of the satellite is divided in to different phases depending

on the link conditions, the data to be sent and maintaining the reliability of the

communication.

Reliable link initialization Protocol Phase: The link between ground station

and satellite is being initialized during this phase. This protocol guarantees

that the satellite is in the visibility region and the signal strength is good

enough for data to be transferred. After the handshaking is done sequence

80

Figure 4.17: Phases during the communication window of the satellite

numbers and other default status variables of the protocol are initialized so

that critical and payload data can be transfered reliably. Because of poor

link margin initially the baud rate is kept low to improve SNR. Only control

commands are exchanged during this phase and hence the packet size is small.

Packet Length : Small 32 - 36 Bytes

Baud rate : 2400 bps.

Critical Data Transmission Phase: Critical data transmission phase starts just

after the link initialization is successful. In this phase of the communication

window satellite will transmit the critical health data. Table 4.5 shows the

critical data to be sent to ground station. During this phase of the communi-

cation window satellite is near the horizon and hence the link is comparatively

weak and the BER will be near 1e-3. Hence during this phase for better data

reliability and lower retransmissions we transmit the data at lower baud rate

81

and smaller packet size.

Packet Length : Small 64 Bytes

Baud rate : 2400 bps.

Payload Data Transmission Phase: Payload data transmission phase starts af-

ter the critical data have been transmitted successfully. By the time satellite

have transmitted the critical data it will in the good visibility of the commu-

nication window and link margin, SNR will be better than 12 dB. Hence we

increase the baud rate of downlink to 9600 or 4800 depending on performance

of the link. After change baud rate process the satellite starts transmitting

data from where it had stopped during the last payload data transmission

phase.

In this phase of the communication window satellite will transmit the payload

data. Table 4.6 shows the payload data and other noncritical health data

to be transmitted to ground station. Downlink baud rate is increased during

payload data transmission so that maximum data can be transmitted to GS in

a single communication window. Also the packet size is increased to increase

the throughput of the channel.

Packet Length : Medium 200 Bytes

Baud rate : 4800/9600 bps.

Satellite will autonomously calculate the start and end time of communi-

cation window using orbital propagation code. When the satellite goes out

of the 75 degree visibility cone, it will start its closure phase and stop trans-

mitting the payload data. The satellite and ground station will synchronize

82

their sequence numbers of packets sent and received successfully. Satellite will

close the communication link by sending DISCONNECT command to ground

station. DISCONNECT command can be sent by ground station to satellite

or from satellite to ground station to inform the end of reliable 75 degree vis-

ibility cone. Once disconnected the satellite will again transmit critical data

at lower baud rate and smaller packet size because of the same reasons as in

link initialization phase.

Link Closure Phase: Packet Length : Small 64 Bytes

Baud rate : 2400 bps.

Reliable link initialization procedure

LEO satellite have property of periodic visibility; they keep moving in and out of

the communication window which implies that the link between GS and the satellite

is continuously established and broken. Hence we implemented link management

protocol LAMSLM (Low Altitude Multiple Satellite Link Management)[29]. The

LAMSLM [29] protocol is mainly designed for link management between multiple

LEO satellites communicating with each other.

We modified the protocol idea and merged it with unbalanced type of Reliable

Link Initialization Procedure (RLIP)[30]. Unbalanced because the link initialization

is always started and controlled by satellite. LAMSLM uses a unique link closure

mechanism at the conclusion of each active period that permits faster link reinitial-

ization at a later point. The link closure mechanism is explained in Section 4.5.7,

the link closure phase uses the same mechanism as in LAMSLM.

Since orbital propagation codes are running both on the satellite and the GS

83

with minimal error, prediction of start and close of the communication is possible

and hence satellite can always initiate link initialization and link closure in synchro-

nization with the GS.

Data reliability can be guaranteed by DLC protocols only if reliable link initializa-

tion is successfully completed before DLC protocol starts. The purpose of the Link

initialization stage is to synchronize the two DLC processes, when the SUCCESS

command is transmitted by the satellite, handshaking is performed between GS and

satellite and the DLC parameters are exchanged in the Control-Info field.

Figure 4.18: Reliable link initialization protocol.

84

Working of RLIP

All the control commands are transmitted in C-frame format; RLIP is not a part of

the Data Link Control protocol. Hence, the control commands don’t need sequence

numbers. Working of the RLIP is as explained below:

• Once satellite and GS have detected the start of communication window (zero

degree elevation) they will start transmitting PING command continuously.

On receiving PING command, ACK PING will be transmitted as a hand-

shaking signal indicating that the satellite is in the visible region but with no

guarantee about the link quality. Once the handshaking is finished it indicates

that the target has been locked and RLIP can start.

• The satellite starts by transmitting DISC control frames at regular intervals

using TIME OUT until DACK control frame is received from GS.

• The satellite then sends CLEAR control frame to ground station at regular

intervals using TIME OUT until CACK control frame is received from GS.

• The satellite then transmits TEST control frame only once and waits for a

TACK control frame in response. Once the timer is out the satellites goes

back in to WAIT-DACK state and starts transmitting DISC control frame.

• If all the ACK control frames are received from GS within the TIME OUT,

then satellite transmit SUCCESS command and switches to connected mode

and starts transmitting I-frames.

• TIME OUT values don’t have any effect on the performance of the RLIP.

85

Following Downlink Data Link Control parameters are exchanged between ground

station and satellite during the RLIP phase:

1. newWindowStart: Pointer to the start of the downlink sender/receiver win-

dow.

2. newWindowEnd: Pointer to the end of the downlink sender/receiver window.

3. ErrorList: List of the erroneous packets in the current window, these packets

are retransmitted.

No Uplink DLC parameters are transmitted for synchronization because once the

link is broken all the incomplete uplink data is retransmitted.

Link Closure Phase

One of the advantages of link closure is that after the satellite is out of communi-

cation window no further packets are sent by satellite, hence lesser the loss of data

more is the transmission power saved.

Also during the closing phase of the communication window, satellite will be at

low elevation angles hence we need to transmit data at lower baud rate, Section 4.5.6

and also the packet size should be smaller, Section 4.5.5. Since before the commu-

nication window is started we have already formed the packets with fixed payload

packet size and fixed critical data packet size(as mentioned in Table 4.15) therefore

in the link closure phase we change the baud rate then perform the closure phase

operation and then transmit the less critical satellite status data having smaller

packet size.

After this phase the satellite stops transmitting the payload data and hence

the payload data sender/receiver window parameters are synchronized by exchang-

86

Figure 4.19: Link closure phase

ing the DLC parameters so that the payload data transmission phase of the next

communication window starts with the same sender/receiver window parameters.

If the link closure is done successfully then no window synchronization process is

performed during RLIP.

Working of Link Closure Phase

1. On detection of the end of 75◦ communication window either the satellite or

GS sends DISCONNECT command continuously until a DSACK commands

is received.

2. Once the above event is done, baud rate of the downlink is changed to 2400

bps and then SCLEAR command is sent by the satellite continuously with

TIME OUT until the SCACK command is received from GS. Sender/ receiver

87

DLC window parameters are also synchronized during this step of the process.

3. Satellite then sends CLOSED command to GS continuously with TIME OUT

until ACK CLOSED command is received.

88

4.5.8 Uplink Data link control protocol

Ground station will send the following data to satellite during the data transmission

phase:

Control Telecommands: This control commands are sent from ground station to

the satellite, controlling the operation of the satellite in orbit. These com-

mands have highest priority and will be serviced by satellite immediately.

These commands are transmitted using C-frames format 4.5.3. They may or

may not carry control information in the control-info field with them. Exam-

ple of such commands is DEVICE OFF, used for turning “off” a particular

device on satellite immediately or RESET to reset the satellite controller.

Configuration Data: Configuration data for configuring different subsystems of

the satellite as well as the basic operation of the satellite may be controlled

or improved. These data is sent in the form of I-frames format. Example of

such configuration data is configuring the mode of operation of GPS, send-

ing the co-ordinates of the target whose image is to be taken, system time

synchronization.

CheckPoint packets: These acknowledgements are transmitted from GS to satel-

lite as a part of the downlink protocol. Checkpoint packets are transmitted

using C-frame format.

The I-frames are sent to the satellite using Go-Back-N ARQ sliding window protocol.

From Figure 4.2, receiver is connected to OBC - 1 hence the uplink DLC protocol

should as simple as possible with minimum memory buffer and computational power

requirement.

89

Packet Length

Figure 4.8 shows the packet format for uplink, general configuration for the uplink

protocol is as shown below:

Baud rate : 1200 bps

Packet Length of Telecommands: 32-36 bytes

Packet Length if Configuration Data: 64 bytes

Go-Back-N ARQ

Go-Back-N ARQ [26] simplifies the process at the receiver end. The receiver only

have to keep track of the current packet to be received and there is no need for buffer

at the receiver end. This protocol is ineffective in scenario where the link is noisy

and BER is very low but in our case we have better link margin in the uplink and

transmission power is also high hence number of retransmissions due to erroneous

packets will be low.

The configuration data is sent from GS to satellite using Go-Back-N ARQ which

is a special case of general sliding window protocol. We are using a sender window

size of 5 and receiver window size of 1. Maximum sequence number is 255, acknowl-

edgements are received from the satellite to GS using piggybacking technique. Since

the downlink works at higher baud rate a window size of 5 will be enough for 100%

link utilization of uplink. Since the sequence number can go up 255 we can increase

the window size at ground station upto 255. The link utilization for Go-Back-N

ARQ is:

a =
Propagation time

Transmission time
(4.3)

90

u =
(1− P)

(1 + 2aP)
when n > 2a+ 1 (4.4)

u =
((1− P)×N)

((1 + 2a)× (1− P +NP))
when n < 2a+ 1 (4.5)

For satellite, P = 1E-4 (BER), N = 5 and a ≤ 1.8

4.5.9 Downlink Data link control protocol

Since LEO satellites have periodic visibility with continuously varying link perfor-

mance when the satellite is in communication window, a lot of time is wasted in link

management and packet retransmission. From the communication link specification

and the transmitter power available we can consider the downlink to be more noisy

than uplink and hence the downlink protocol should be such that it can handle

noisy channel giving maximum throughput with minimum number of retransmis-

sions. Go-Back-N ARQ is not used for downlink protocol because it is inefficient in

noisy channel. Even a single erroneous packet will cause retransmission of multiple

frames which reduces the performance of Go-Back-N ARQ. Selective Repeat ARQ

protocols are suitable for noisy channels and sliding window protocols increase the

link utilization.

Ward and Choi [31, 32] proposed a new link layer protocol, LAMS-DLC, suited

to the low earth orbit environment, offering a reliable datagram service. The pro-

tocol is a negative acknowledgement(NAK) timer based checkpoint ARQ protocol,

receiver sends periodic responses called check point(CP) commands having selective

cumulative information regarding previous erroneous I-frames and is used to ensure

that erroneous frames are properly retransmitted.

91

Also, transmitter on the satellite is connected to OBC -2 which has higher com-

putational power (32-bit RISC, 48Mhz) and on-chip memory (512KB) which can be

used as sender buffer hence we can go for more complex protocols.

Considering all the above factors, we combined the features of both sliding win-

dow selective repeat ARQ [26] and checkpoint ARQ [31, 32] to form DLC protocol

which can be used for satellite downlink.

Satellite Downlink Protocol (SDP)

Satellite downlink protocol uses sliding window concept but instead of using peri-

odic pos-ACK or NAK we use checkpoint based negative acknowledgements. This

protocol increases the throughput efficiency with minimum complexity at the sender

end and also has a separate mode for link failure detection.

The downlink protocol operation is split into two time intervals checkpoint in-

terval and cumulative time interval as shown in Figure 4.20. After every checkpoint

interval a CP command is transmitted by the ground station and then satellite

starts sending the packets from the start of the window, resending the erroneous

packets. Cumulative time interval is bigger than the burst error time and consists

of many checkpoint intervals such that all the packets in the current sender window

are transmitted successfully to ground station within a cumulative time.

We are using two types of frames in the protocol, I-frames are used for send-

ing information data from satellite to GS and C-frames are used for CP packets,

enforceCP packet, Request enforceCP packet. CP packets and enforceCP packets

have information about the last successfully received packet as well as the list of

sequence numbers of the packets which are discarded at GS due to error.

92

Figure 4.20: Time Intervals in downlink protocol

Sliding window protocol

For pipelining of packets in downlink data transmission, sliding window is main-

tained at the sender and receiver site. Sender and receiver have a window size of

128, sender maintains a buffer of 256 packets in flash. 8 bit sequence number is

used in the protocol. Sender and receiver windows slide only after every cumulative

time interval by amount which is dependent on the last successfully received packet

sequence number. After every cumulative time interval the window slides till the

position (lastSuccess12 - 64) mod 256, hence it is enforced that the window slides till

(lastSuccess - 64) mod 256 using clearbacklog mode. CP packets act as NAK and

all the erroneous packets indicated in the CP packet are retransmitted each time

a CP packet is received but the window slides forward only after the clearbacklog

12lastSucess is the sequence number of the last successfully received packet.

93

mode which occurs every cumulative time interval.

CP Frame Format

Control-Info field of CP packets carry information about the erroneous packets re-

ceived at GS. 256 bits are used to transmit this NAK information, each bit corre-

sponds to the packet with that sequence number in the sliding window. If there is a

1 at that bit position ’n’ then the packet with sequence number ’n’ was successfully

received at the GS and a 0 indicates that the packet ’n’ needs to be retransmitted.

Along with this sequence number of the last successfully received packet at the GS

is transmitted in the CP packet.

Format of enforceCP packet is same as that of CP packet with the only difference

being the command Id.

Time Intervals

Two time intervals are used in the protocol to enforce data-reliability, checkpoint

time interval13 and cumulative depth time interval14.

After every check point time interval, CP packet is transmitted from GS to satellite

thus the error list is synchronized and the satellite then retransmits all the erroneous

packets received till this check point time. After every cumulative time interval,

sender and receiver operate in clear backlog mode and the window update procedure

slides the window forward.

13Check point time interval ≈ transmission time of 10 packets
14Cumulative time interval ≈ transmission time of 120 packets

94

Functions Used

LoadPacket SDCARD: This function loads the packet stored in SDCARD on to

the buffer maintained in the internal flash of micro-controller. This function is

called to initialize the sender window and after each slide window operation.

SendPacket(x): This function transmits the packet at position ’x’ in the buffer.

A buffer size of 256 packets is maintained at the sender size and the sender

window slides over this buffer space.

initializeWindow: This function is called to initialize the sender/receiver window

depending on the parameters synchronized during the last link closure proce-

dure or RLIP. After this the sender and receiver windows are identical, ready

to start the data transfer.

windowUpdate: This function is called to update the sender and receiver window

after the backlog is cleared. The sender/receiver window slides forward from

newWindowStart to the position of the first erroneous packet in the list and

new packets are loaded from SDCARD onto the flash buffer.

clearBackLog: This function is called when cumulative timer expires. It makes

sure that all the packets from newWindowStart till (lastSuccess - 64) mod 256

are successfully received at GS. During this mode of operation GS increases

the sending frequency of CP packets.

enforeCP: enforceCP function sends Request-enforeCP packet continuously with

a TIME OUT interval until an enforeCP packet is received from GS. After

receiving the enforceCP packet errorlist is updated.

95

SendCP/SendeCP: sendCP function send the CP packet and sendeCP function

sends enforeCP packet to the satellite.

onPacketRev: This packet creates an event whenever a packet is received at GS

and depending on whether the packet is successfully received or not the er-

rorlist is updated.

Variables/Parameters Used

newWindowStart: Start position of the current window in the buffer.

newWindowEnd: End position of the current window in the buffer.

errorlist: Error list maintained using 256 bits where each bit represents the corre-

sponding packet in the buffer. ’1’ at a bit position means that a valid packet

is received with that sequence number.

oldWindowStart: Start position of the window before windowUpdate (slide win-

dow) function was executed. Used during the window initialize operation.

oldWindowEnd: End position of the window before windowUpdate (slide window)

function was executed. Used during the window initialize operation.

lastSuccess: Sequence number of the last successfully received packet on Ground

station.

Sender Process (Satellite)

After RLIP has successfully finished and the link is properly initialized, the following

sender process as explained in flowchart in Figure 4.21 is executed:

96

STEP 1: Initialize the sender window, load packets from SDCARD onto the buffer

in flash. Initialize all the Variables/Parameters of the protocol.

STEP 2: Start the cumulative depth interval timer and call windowUpdate proce-

dure to update the current sender window. If there are any empty slots in the

window, packets are loaded from SDCARD onto the flash.

STEP 3: Start sending packets from the newWindowStart till newWindowEnd po-

sition using errorlist, the packet corresponding to which there is a ’0’ in the

errorlist is retransmitted.

EVENT 1: If CP packet is received then the errorlist and lastSuccess values are

updated. Control returns back to the STEP 3.

EVENT 2: If cumulative depth timer expires then:

1. If no CP packet was received during the entire cumulative time interval

then protocol goes into enforeCP mode and waits for a enforceCP packet.

Once the enforceCP packet is received errorlist is updated and the pro-

tocol goes into clearbacklog mode. Once the backlog is cleared control

goes back to STEP 2.

2. If CP packets were received during the cumulative time interval then

the protocol goes into cleabacklog mode and once the backlog is cleared

control goes back to STEP 2.

3. If in the enforeCP mode satellite fails to receive any enforeCP packet

over a TIME OUT interval then the DLC protocol declares the link to

be broken and goes in to LINK FAILURE MODE.

97

Figure 4.21: Satellite sender process flow chart

98

Receiver Process (Ground Station)

After RLIP has successfully finished and the link is properly initialized, the following

receiver process as explained in flowchart in Figure 4.22 is executed:

STEP 1: Initialize the receiver window, load packets from ’GS file’ onto the buffer

if required. Initialize all the parameters mentioned in Variables/Parameters

list.

STEP 2: Start the cumulative depth interval timer and call windowUpdate pro-

cedure to update the current receiver window. Packets from oldWindowStart

till newWindowStart are logged on to a file on GS.

STEP 3: Keep receiving packets and process or log the packet depending on pri-

ority of the command Id. If the packet received is erroneous then the corre-

sponding bit is updated in errorlist.

EVENT 1: If CP timer expires then latest errorlist and lastSuccess values are

transmitted by ground station. Control returns back to the STEP 3.

EVENT 2: If cumulative depth timer expires then, If there is backlog to be cleared

then protocol goes into clearbacklog mode and GS increases the sending fre-

quency of CP packets. Once the backlog is cleared enforceCP mode is executed

and the control returns back to STEP 2.

EVENT 3: If Request-enforceCP packet is received then GS keeps transmit-

ting enforeCP packet until an I-frame is received.

EVENT 4: If no frames are received from satellite for a TIME OUT15 interval of

15TIME OUT in this case is sufficiently large so that GS does not falsely declare link failure

99

time. Then the DLC protocol declares that the link is broken and goes into

LINK FAILURE MODE.

4.5.10 Link Failure Mode

Link failure can occur because of many reasons like hardware or system errors,

periodic long burst errors. If there is a link failure then before the DLC protocol

can be restarted, link should be reinitialized.

Uplink failure can be determined if no CP packet is received over a certain

TIME OUT. The satellite then goes into forceCP mode and waits for the enforceCP

packet. If satellite fails to receive any CP packet then DLC protocol declares that

the link is broken and the satellite switches to lower baud rate of 2400 bps and

starts the RLIP. If the RLIP also fails over N 16 number of tries, the satellite detects

emergency, does a system check over the devices and starts transmitting the data in

broadcast mode. If in the failure mode or emergency mode a packet is received from

GS then satellite again tries the RLIP and reinitializes the link. After satellite is gone

in to broadcast mode during the next RLIP all the parameters of sender/receiver

window are initialized to default state (RESET condition).17

Downlink failure can be determined if no I-frames are received over a certain

TIME OUT on GS. Ground station then goes into forceCP mode and starts sending

the enforceCP packet with higher frequency and waits for an I-frame. After a certain

TIME OUT then GS declares the downlink to be broken and configures the receiver

to receive packets at 2400 bps. GS waits for the satellite to detect link failure and

16N is sufficiently large for the GS to detect link failure and switch the receiver to 2400bps
17RESET condition : Receiver has not received packets in its window and the error list is also

all zeros indicating no erroneous packet received

100

Figure 4.22: Ground station receiver process flow chart

101

start the RLIP. If in failure state no RLIP is initiated within a certain TIME OUT,

GS goes into emergency state. If in emergency mode GS receives a I-frame, it means

that the satellite is broadcasting frames and hence GS keeps receiving and processing

the frames as well as sending PING control packet to satellite.

If recovery from link failure was not successful in the previous communication

window, then depending on whether satellite went into broadcasting mode or not

the sender/receiver window are initialized to RESET state or normal state during

the RLIP of the new communication window.

102

Chapter 5

Software Fault Tolerance

Software fault tolerance is essential because of the inability of the developers to

produce error-free code. Its hard to guarantee bug free software design and its

implementation. Also in space environment errors and faults may get added into

the system, software design techniques should guarantee system operation even in

the presence of such limited upsets at the device level.

It important that OBC is tolerant against single point failures, hence efforts are

taken to make the OBC as robust as possible. Various software fault tolerance tech-

niques [33] are being used for these reasons. There are two types of fault software

fault tolerance techniques: single version and multi-version software techniques. Sin-

gle version, improves the tolerance of single piece of code by adding techniques which

can detect and handle errors caused due to design or device fault. Multi-version,

improves the tolerance by using multiple versions of the same piece of software, this

multiple versions are used to correct error in any one of the version. Section 5.1,

Section 5.2 and Section 5.3 describe single-version based techniques used by OBC to

detect and handle faults. Software triple modular redundancy is also implemented

103

on program and data memory of the satellite to provide fault tolerance against

soft-errors caused due to radiations in space.

5.1 System Reset Based Mechanism

In case of errors which are non-recoverable, like normal task restart techniques fail to

resume the normal operation then under such situations the crude RESET operation

is performed. Such non-recoverable errors can be resolved by using various timer

modules. The following timer reset modules are used :

5.1.1 External Watchdog Timer

Real Time Clock (RTC) M41T81S [15] is interfaced with both the OBCs on the

satellite, it is used for maintaining the system time of the satellite. This module

also has internal watchdog timer which generates an interrupt on one of the IO

pins of OBC whenever the watchdog timer overflows. This interrupt can be used

to generate software (SW) reset which will cause the satellite to resume normal

operation starting with the initialization mode. Whenever the OBC is reset, TMR

is implemented on the program memory which solves the soft error bugs while all

the devices interface with OBC are reset and reconfigured which solves bugs because

of device failure.

5.1.2 Internal Watchdog Timer

Both the OBCs have internal watchdog timer as well which is used for same recovery

operations on the satellite. Diagnostic operations are performed by the satellite so

that the cause of software fault can be detected before the processor is reset. Also

104

before resetting the satellite, backup of all the important state variables is taken.

We have implemented self-test using diagnostic task based technique as explained

by Niall Murphy in his article [34].

5.1.3 OBC-1 & OBC-2 Periodic Check

Also the reset pin of OBC-1 is connected to OBC-2 and reset pin of the OBC-2

is connected to OBC-1. Hence in situations where ISR based SW reset method

fails to reset the processor then in such cases the other OBC can cause an external

hardware reset. Both the OBCs periodically “ping” each other, if the ping is not

receive within a certain TIME OUT over multiple checks then the hanged OBC

is reset. Thus if some software or hardware error causes OBC to hang and stop

responding then it is resolved by reseting the OBC. There are three redundancies

on the satellite for performing this operation as mentioned above. By default all the

devices interfaced with OBC are in off-state and are turned “on” only after checking

in the initialization mode. OBC goes into Initialization mode each time it is reset,

hence resetting the OBC will switch “off” the faulty device interfaced to it and won’t

be turned “on” again.

5.2 Checkpoint and Recovery Based Mechanism

Along with a crude reset method of software fault tolerance, we also use the technique

of checkpoint based system log and recovery [33]. We have created a diagnostic task

in the OS of both OBCs which periodically logs the critical data like:

• Device health status which indicates working and failed devices.

105

• ADCS status variables

• Global variables which maintain the data handling on the satellite.

• Global variables which define the state of the satellite.

This critical data is periodically logged into a file on the SDCARD by the diagnostic

task, if the processor is reset then these logged data is used to recover the satellite

to its previous state of operation. This helps in maintaining the state of the satellite

and the operations performed by payloads and other subsystems are still retained

even if some hardware or software error causes the processor to reset.

5.3 Task Restart Based Mechanism

Diagnostic task also keeps track of the progress of all the tasks which are in ready

queue. If over a certain number of scans diagnostic task finds that a particular

task has hung then that particular task is restarted. This plays an important role

in cases when the task has hung because of stack corruption or device failure etc.

Stack memory corresponding to each task is located in RAM and corruption of this

memory may cause the task to hang, this can be resolved by restarting the task.

5.4 Effect of Radiations in Space

Radiation effects in space on circuits are caused due to high-energy particles. Ra-

diation environment is of concern for nanosatellites because of the use of COTS

devices, COTS devices have low tolerance as compared to the radiation hardened

devices used in small-satellites. Radiation effect can be divided into two categories:

106

Total ionizing doze: Total ionizing dose effects are caused due to absorbed charge

or displacement damage caused by charged particles energy deposition within

device structure. The total-dose tolerance of “commercial-off-the-shelf” de-

vices is around 2-10 krad(Si), typical dose rates due to trapped electrons and

protons is around 1 krad for LEO satellites [35]. Hence commercial-off-the-

shelf components with typical total-dose values in the range of 2-10 krad can

be used without any protection layers over them. Since lifetime of nanosatel-

lites is around 3-12 months shielding is not required and device can survive

total-dose effects.

Single event effects (SEE): Single event effects are the upsets that occur in dig-

ital ICs with small feature size, because of high rate of ionization produced

by a ion passing through a sensitive node in the device [35]. SEE can cause

device latchup called single event latchup (SEL) and the device may draw

large amount of current within a short duration of time, damaging the device

permanently if not powered off. SEE can also directly upset bits in memory or

register of a device, such bit-flips are called soft-errors or single event upsets

(SEU).

SEL problem can be handled by using current limiting circuits, if the device

draw high current then the power supply to that device is turned “off” and the

device is protected against permanent damage. Bit-flips (SEU) in RAM memory

can be rectified by resetting the processor hence the error in the dynamic data in

code segments in volatile memory is resolved. SEU in non-volatile memory like

program flash and SDCARD can be removed by using triple modular redundancy,

explained in more details in the following sections. Errors caused due to bit-flips in

107

the internal registers of the devices are removed by resetting and then reconfiguring

those devices.

5.4.1 Triple Modular Redundancy (TMR)

A TMR system consists of three redundant copies of information. A voter module

compares the three copies and then selects the value of majority. The TMR system is

therefore designed to tolerate the failure of any single copy by only producing output

on which at least two modules agree. This majority voted data is also written on the

third copy in which the bit flip might have occurred. Triple Modular Redundancy,

or TMR, is based on the assumption that the probability of an SEU-generated fault

is finite, small and localized [36]. We have implemented software triple modular

redundancy on SDCARD and program memory by creating three copies of data

on the same memory and using software to compare values in the three copies and

correct them using majority voting algorithm. The TMR model will be implemented

at bit level on the memory by using following expression:

If A, B and C are three bytes on which majority voting algorithm needs to be

implemented at bit level then the below expression gives the voted value which will

be overwritten over all 3 copies.

Correct V alue = ((A⊕B) · (A⊕ C))⊕ C (5.1)

5.5 TMR on Program Memory

Single event upsets can cause errors in the following memory segments:

1. Code and data segments resident in volatile memory (internal RAM).

108

2. Data stored in non-volatile memory (internal flash).

3. Program memory stored in the non-volatile memory (internal flash).

The result of this errors could be wrong output, wrong behaviour or even exceptions

in cases where instruction gets converted to an unknown op-code for the processor.

To avoid this scenario we implemented triple modular redundancy on the internal

program memory. Figure 5.1 describes the memory structure after implementing

TMR on it. Different sections of the memory are as described below:

RAM structure: Initial section of the internal RAM is reserved for “TMR imple-

mentation function”. Whenever TMR needs to be implemented on the flash

memory code is loaded from flash into this section and executed. For example

whenever the Memory check Task explained in Section 3.4.1 and Section 3.4.2

detects bit-flip in program memory it stop the current execution, loads TMR

code into this section and read/write operation is performed on the flash mem-

ory. Other parts of the RAM are divided in to stack (RAM section), initialized

data (IDATA) and Uninitialized data (UDATA).

Interrupt vector: For the reliable operation of the interrupts, it is essential that

there is no bit-flip in the Interrupt Vector Table (IVT). Hence three copies

of IVT is also maintained in the internal flash memory, TMR is applied on

it whenever a reset occurs. Also before resetting the microcontroller TMR is

applied on the IVT inside the exception handler. So that after reset processor

starts executing from the correct reset handler.

Code Segment: Three copies of code segment is also maintained in the flash mem-

ory, TMR is applied on this segment each time the processor resets.

109

CRC of program memory: To detect if there are any bit flips in the flash mem-

ory, CRC calculated on the entire flash memory is stored after each code

segment. TMR is applied on this CRC bytes as well. Memory Check task

explained in Section 3.4.1 and Section 3.4.2 uses this CRC to detect bit flips

in the program memory.

Bootstrap Loader: This section of code resides at the start of code segment, when-

ever the microcontroller resets, reset handler calls the bootstrap loader which

implements TMR on the flash memory and then returns the control to the

reset handler which in the end calls the “main” function.

As explained in Section 5.1, reset can occur because of the three different modules,

in each of the interrupt handlers we implement TMR on the bootstrap loader and

interrupt vector so that after reset processor executes code from the correct reset

handler. The implementation of bootstrap loader is such that on each reset the pro-

cessor starts executing from next bootstrap loader, for example if initially bootstrap

loader-1 is called then on next reset bootstrap loader-2 is called and after bootstrap

loader-3 again bootstrap loader-1 is called and this sequence is followed. Thus pro-

cessor will fail to recover only if all the three bootstrap loader gets corrupted. In

processor idle time we keep syncing the redundant copies on flash with the image of

code on the SD-CARD which will again reduce the probability of having bit flip in

the redundant copies. Bit flips in RAM section of the memory can only be corrected

by reseting the microcontroller, hence we do a planned reset of the microcontroller

after every 6 hrs. This planned reset will also resolve problem which can occur

because of bit-flips in the control registers of the microcontroller, no TMR can be

applied on this control registers.

110

Figure 5.1: TMR implementation on internal program memory.

111

5.6 TMR on SDCARD

We are using SDCARD on satellite for storing system log, payload data, image of

the program memory and other default state initialization data. This data is critical

for the satellite, hence we implemented a filesystem which will apply TMR on this

data each time it is read from the SDCARD. We need a file system which provides

all the features of a normal file system along with being reliable to accidental bit

flips. It will have features to detect an accidental bit flip, and will be able to self

correct any such anomaly. As mentioned in Section 2.1.2 and Section 2.2.2 we are

using FAT16 filesystem on SDCARD. To make this filesystem robust against soft

error we have implemented a scheme which applies TMR both on the data in the

SDCARD and filesystem on the SDCARD.

Figure 5.2 describes the structure of SDCARD after software TMR is imple-

mented on it. Different sections in the SDCARD are as described below:

Filesystem: Two copies of filesystem structure which includes boot record, FAT

structure and root directory is maintained at the end of the SDCARD. Af-

ter every fixed interval of time TMR is applied on this filesystem structure to

remove any bit-flips and guarantee normal operation of the filesystem. Filesys-

tem can get corrupted because of SEU which is detected by filesystem APIs,

for correcting this error TMR is applied on the filesystem structure.

Image of OBC Code: Three copies of OBC code are maintained on the SD-

CARD, each time before the code image from SDCARD is copied onto the

flash memory, TMR is applied on the SDCARD copies. Image of OBC code

is maintained on SDCARD so that it can be loaded on to the flash memory

112

periodically removing the bit-flips in redundant flash memory.

Data region: Data is stored on the SDCARD in the form of files. Three copies of

the same file are maintained on the satellite, each time a read/write operation

is performed on a data, these operations are performed on all the three copies.

For example before reading data from a file TMR is applied on it and while

writing data, same data is written on all the three files.

TMR implementation on the filesystem structure and Image of OBC code is per-

formed not by using filesystem APIs but by using direct SDCARD memory read/write

APIs.

113

Figure 5.2: TMR implementation on SDCARD.

114

Chapter 6

Conclusions

For system software integration testing, we interfaced all the devices used on the

satellite with on board computers and tested the device drivers. The software design

of the system was tested by generating different unit test cases and checking on

board computer’s response. Communication protocol was tested on hardware and

performance of the protocol was verified under different phases. All the control

algorithms of the protocol like adaptive packet length and adaptive baud rate were

tested separately. Also software fault tolerance was tested by inducing random bit-

flips in the memory. On board computers could self-recover from such SEUs caused

in both program memory and filesystem.

In this thesis, we have presented the design requirements and the development

process for the on-board computer software for the nanosatellite JUGNU. The details

of the communication protocol suitable for low earth orbit satellite, developed for

reliable command and data transfer over the available communication channels have

been discussed. The various methods developed to confer fault tolerance to the

system have also been discussed. The analysis of these methods suggests that their

115

use will enhance the reliability of the system as a whole, and will allow the use

of commercial grade electronics in the harsh space environment. The use of these

methods also relaxes the constraints on communication channel fidelity, causing an

overall reduction in the hardware complexity and subsequently system size. Use

of Real time OS and embedded filesystems reduces the implementation complexity

of the satellite computers by allowing code reusability and makes the development

faster. The software was tested successfully against random bit-flips in the program

memory and the data memory.

The imminent launch of JUGNU and subsequent analysis of our design’s per-

formance over the one year duration of the mission will prove its viability and also

indicate areas of future work to further enhance the system reliability of the next

generation nanosatellites.

116

Bibliography

[1] “California polytechnic state university.” "http://www.calpoly.edu/".

[2] “Stanford universitys space systems development lab.” "http://ssdl.

stanford.edu/ssdl/index.php".

[3] “Pumpkin, inc..” "http://www.pumpkininc.com/".

[4] “Micrium, inc.” "http://micrium.com/page/home".

[5] “Ucosii datasheet.” "http://micrium.com/newmicrium/uploads/file/

datasheets/ucosii_datasheet.pdf".

[6] “Efsl embedded filesystem library.” "http://efsl.be/".

[7] “Salvo pro 4 user manual.” "http://www.pumpkininc.com/content/doc/

manual/SalvoUserManual.pdf".

[8] “Effs - thin v 1.87 implementation guide - hcc embedded.” "http://www.

hcc-embedded.com/en/products/file_systems/thin/msp430".

[9] T. I. Inc., “Datasheet - msp430f261x.” "http://focus.ti.com/lit/ds/

slas541f/slas541f.pdf", December 2008.

[10] “Msp430x2xxx family user guide (rev e).” "http://focus.ti.com/lit/ug/

slau144e/slau144e.pdf", March 2008.

117

"http://www.calpoly.edu/"
"http://ssdl.stanford.edu/ssdl/index.php"
"http://ssdl.stanford.edu/ssdl/index.php"
"http://www.pumpkininc.com/"
"http://micrium.com/page/home"
"http://micrium.com/newmicrium/uploads/file/datasheets/ucosii_datasheet.pdf"
"http://micrium.com/newmicrium/uploads/file/datasheets/ucosii_datasheet.pdf"
"http://efsl.be/"
"http://www.pumpkininc.com/content/doc/manual/SalvoUserManual.pdf"
"http://www.pumpkininc.com/content/doc/manual/SalvoUserManual.pdf"
"http://www.hcc-embedded.com/en/products/file_systems/thin/msp430"
"http://www.hcc-embedded.com/en/products/file_systems/thin/msp430"
"http://focus.ti.com/lit/ds/slas541f/slas541f.pdf"
"http://focus.ti.com/lit/ds/slas541f/slas541f.pdf"
"http://focus.ti.com/lit/ug/slau144e/slau144e.pdf"
"http://focus.ti.com/lit/ug/slau144e/slau144e.pdf"

[11] “Cubesat kit.” "http://www.cubesatkit.com/content/overview.html".

[12] “Datasheet cubesat kit ppm a3 - rev b.” http://www.cubesatkit.com/docs/

datasheet/DS_CSK_PPM_A3_710-00516-B.pdf.

[13] “Cubesat kit in space.” http://www.cubesatkit.com/content/space.html.

[14] “Datasheet cubesat kit fm430 rev c.” "http://www.cubesatkit.com/docs/

datasheet/DS_CSK_FM430_710-00252-C.pdf".

[15] “Datasheet m41t81s - stmicroelectronics.” "http://www.st.com/stonline/

products/literature/ds/10773.pdf".

[16] “Crossworks for msp430 user guide.” "www.rowley.co.uk/msp430/msp430_

manual.pdf".

[17] “Datasheet atmel at91sam7x512.” "http://www.atmel.com/dyn/resources/

prod_documents/doc6120.pdf".

[18] “Iar embedded workbench for arm.” "http://www.arm.com/community/

partners/display_product/rw/ProductId/2107/".

[19] “Segger jlink.” "http://www.segger.com/cms/jlink.html".

[20] “J2 orbital perturbation.” "http://www.braeunig.us/space/orbmech.htm".

[21] “Datasheet cc1070.” "http://focus.ti.com/lit/ds/swrs043a/swrs043a.

pdf".

[22] “Datasheet atmel avr atmega8.” "http://www.atmel.com/dyn/resources/

prod_documents/doc2486.pdf".

118

"http://www.cubesatkit.com/content/overview.html"
http://www.cubesatkit.com/docs/datasheet/DS_CSK_PPM_A3_710-00516-B.pdf
http://www.cubesatkit.com/docs/datasheet/DS_CSK_PPM_A3_710-00516-B.pdf
http://www.cubesatkit.com/content/space.html
"http://www.cubesatkit.com/docs/datasheet/DS_CSK_FM430_710-00252-C.pdf"
"http://www.cubesatkit.com/docs/datasheet/DS_CSK_FM430_710-00252-C.pdf"
"http://www.st.com/stonline/products/literature/ds/10773.pdf"
"http://www.st.com/stonline/products/literature/ds/10773.pdf"
"www.rowley.co.uk/msp430/msp430_manual.pdf"
"www.rowley.co.uk/msp430/msp430_manual.pdf"
"http://www.atmel.com/dyn/resources/prod_documents/doc6120.pdf"
"http://www.atmel.com/dyn/resources/prod_documents/doc6120.pdf"
"http://www.arm.com/community/partners/display_product/rw/ProductId/2107/"
"http://www.arm.com/community/partners/display_product/rw/ProductId/2107/"
"http://www.segger.com/cms/jlink.html"
"http://www.braeunig.us/space/orbmech.htm"
"http://focus.ti.com/lit/ds/swrs043a/swrs043a.pdf"
"http://focus.ti.com/lit/ds/swrs043a/swrs043a.pdf"
"http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf"
"http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf"

[23] “Datasheet - analog devices adf7020-1.” "http://www.analog.com/static/

imported-files/data_sheets/ADF7020-1.pdf".

[24] “Datasheet - maxim max1472.” "http://datasheets.maxim-ic.com/en/ds/

MAX1472.pdf".

[25] T. I. Inc., “Crc implementation with msp430.” "http://focus.ti.com/lit/

an/slaa221/slaa221.pdf", November 2004.

[26] B. A. Forouzan, Data Communications and Networking. New York, NY, USA:

McGraw-Hill, Inc., 2003.

[27] wikipedia, “Morse code.” http://en.wikipedia.org/wiki/Morse_code.

[28] E.-I. KIM, J.-R. LEE, and D.-H. CHO, “Performance evaluation of data link

protocol with adaptive frame length in satellite networks(satellite and space

communications),” IEICE transactions on communications, vol. 87, no. 6,

pp. 1730–1736, 2004-06-01.

[29] C. Ward, S. Mitra, and T. M. Phillips, “Throughput efficiency of an en-

hanced link management procedure,” Computer Communications, vol. 17, no. 9,

pp. 626–636, 1994.

[30] A. E. Baratz and A. Segall, “Reliable link intialization procedures,” in ICC (1),

pp. 24–28, 1984.

[31] C. Ward and C. H. Choi, “The lams-dlc arq protocol,” SIGCOMM Comput.

Commun. Rev., vol. 21, no. 4, pp. 249–257, 1991.

119

"http://www.analog.com/static/imported-files/data_sheets/ADF7020-1.pdf"
"http://www.analog.com/static/imported-files/data_sheets/ADF7020-1.pdf"
"http://datasheets.maxim-ic.com/en/ds/MAX1472.pdf"
"http://datasheets.maxim-ic.com/en/ds/MAX1472.pdf"
"http://focus.ti.com/lit/an/slaa221/slaa221.pdf"
"http://focus.ti.com/lit/an/slaa221/slaa221.pdf"
http://en.wikipedia.org/wiki/Morse_code

[32] C. Ward, C. H. Choi, and T. F. Hain, “A data link control protocol for leo

satellite networks providing a reliable datagram service,” IEEE/ACM Trans.

Netw., vol. 3, no. 1, pp. 91–103, 1995.

[33] T. Wilfredo, “Software fault tolerance: A tutorial,” tech. rep., 2000.

[34] N. Murphy, “Watchdog timers.” "http://www.embedded.com/2000/0011/

0011feat4.htm".

[35] B.R.Bhat, “Single event effects,” tech. rep., ISRO SATELLITE CENTRE,

1999.

[36] “Triple modular redundancy.” "http://www.embedded.com.au/pages/TMR.

html".

[37] J. M. Spinelli, “Reliable communication on data links 1,” 1988.

[38] “Jugnu - nanosatellite.” "http://www.iitk.ac.in/me/jugnu/".

[39] “Adcs subsystem of jugnu,” tech. rep., Indian Institute of Technology, Kanpur.

[40] “Communication subsystem of jugnu,” tech. rep., Indian Institute of Technol-

ogy, Kanpur, 2010.

[41] “Space radiation effects on electronic components in low-earth orbit,” tech. rep.,

NASA, 1996.

120

"http://www.embedded.com/2000/0011/0011feat4.htm"
"http://www.embedded.com/2000/0011/0011feat4.htm"
"http://www.embedded.com.au/pages/TMR.html"
"http://www.embedded.com.au/pages/TMR.html"
"http://www.iitk.ac.in/me/jugnu/"

	Acknowledgements
	Abstract
	Introduction
	Mission Objectives Of JUGNU Nanosatellite
	JUGNU: As a Satellite
	On Board Computers for JUGNU
	Problem Description
	Layout of the thesis

	On Board Computers For JUGNU
	On Board Computer - 1
	Hardware Specifications
	Software Specifications

	On Board Computer - 2
	Hardware Specifications
	Software Specifications

	Software Design of On Board Computers
	Health Monitoring on Satellite
	Temperature Monitoring
	Power Monitoring
	Device Health and Performance Monitoring

	Event Sequencing on Satellite
	Periodic Events
	Scheduled Events

	Satellite System Time
	Tasks List
	On Board Computers - 1
	On Board Computers - 2

	Communication System for JUGNU
	Communication Link Specifications
	Introduction to Communication System
	Telecommand Uplink
	Telemetry Downlink
	Beacon Downlink
	Protocol Design

	Communication System Block Diagram
	Ground Station
	Satellite Communication System

	Communication Window
	Simulation Results
	Telemetry Data Transfer

	Communication Protocol
	Communication Protocol Stack
	Error Control
	Packet Formats
	Beacon
	Variable Packet Length in Downlink Protocol
	Variable Baud Rate for Satellite Downlink
	Phases in communication window
	Uplink Data link control protocol
	Downlink Data link control protocol
	Link Failure Mode

	Software Fault Tolerance
	System Reset Based Mechanism
	External Watchdog Timer
	Internal Watchdog Timer
	OBC-1 & OBC-2 Periodic Check

	Checkpoint and Recovery Based Mechanism
	Task Restart Based Mechanism
	Effect of Radiations in Space
	Triple Modular Redundancy (TMR)

	TMR on Program Memory
	TMR on SDCARD

	Conclusions
	Bibliography

