
159

Compositional Programming and Testing of Dynamic
Distributed Systems

ANKUSH DESAI, University of California, Berkeley, USA

AMAR PHANISHAYEE,Microsoft Research, USA

SHAZ QADEER,Microsoft Research, USA

SANJIT A. SESHIA, University of California, Berkeley, USA

A real-world distributed system is rarely implemented as a standalone monolithic system. Instead, it is

composed of multiple independent interacting components that together ensure the desired system-level

specification. One can scale systematic testing to large, industrial-scale implementations by decomposing the

system-level testing problem into a collection of simpler component-level testing problems.

This paper proposes techniques for compositional programming and testing of distributed systems with two

central contributions: (1) We propose a module system based on the theory of compositional trace refinement

for dynamic systems consisting of asynchronously-communicating state machines, where state machines can

be dynamically created, and communication topology of the existing state machines can change at runtime;

(2) We presentModP, a programming system that implements our module system to enable compositional

reasoning (assume-guarantee) of distributed systems.

We demonstrate the efficacy of our framework by building two practical fault-tolerant distributed systems,

a transaction-commit service and a replicated hash-table.ModP helps implement these systemsmodularly and

validate them via compositional testing. We empirically demonstrate that the abstraction-based compositional

reasoning approach helps amplify the coverage during testing and scale it to real-world distributed systems.

The distributed services built usingModP achieve performance comparable to open-source equivalents.
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1 INTRODUCTION
Distributed systems are notoriously hard to get right. Programming these systems is challenging

because of the need to reason about numerous control paths resulting from the myriad interleaving

of messages and failures. Unsurprisingly, it is easy to introduce subtle errors while improvising to

fill in gaps between high-level protocol descriptions and their concrete implementations. These

problems have been highlighted by creators of large-scale distributed systems [Chandra et al. 2007].
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Existing validation methods for distributed systems fall into two categories: proof-based veri-
fication and systematic testing. Researchers have used theorem provers to construct correctness

proofs of both single-node systems [Chen et al. 2015; Hawblitzel et al. 2014; Klein et al. 2009; Wang

et al. 2014] and distributed systems [Hawblitzel et al. 2015; Padon et al. 2016; Wilcox et al. 2015].

To prove a safety property on a distributed system, one typically needs to formulate an inductive

invariant. Moreover, the inductive invariant often uses quantifiers, leading to unpredictable veri-

fication time and requiring significant manual assistance. While invariant synthesis techniques

show promise, the synthesis of quantified invariants for large-scale distributed systems remains

difficult. In contrast to proof-based verification, systematic testing explores behaviors of the system

in order to find violations of safety specifications [Guo et al. 2011; Killian et al. 2007b; Yang et al.

2009]. Systematic testing is attractive to programmers as it is mostly automatic and needs less

expert guidance. Unfortunately, even state-of-the-art systematic testing techniques scale poorly

with increasing system complexity.

A distributed system is rarely implemented as a standalone monolithic system. Instead, it is com-

posed of multiple independent interacting components that together ensure the desired system-level

specification (e.g., our case study in Figure 1). One can scale systematic testing to large, industrial-

scale implementations by decomposing the system-level testing problem into a collection of simpler

component-level testing problems. Moreover, the results of component-level testing can be lifted to

the whole system level by leveraging the theory of assume-guarantee (AG) reasoning [Abadi and

Lamport 1995; Alur and Henzinger 1999; McMillan 2000]. We present a programming and testing

framework,ModP (Modular P)1, based on the principles of AG reasoning for dynamic distributed
systems.ModP occupies a spot between proofs and black-box monolithic testing in terms of the

trade-off between validation coverage and programmer effort.

Actors [Agha 1986; Akka 2017; Armstrong 2007; Bykov et al. 2010; Pony 2017] and state ma-

chines [Desai et al. 2013; Harel 1987; Killian et al. 2007a] are popular paradigms for programming

distributed systems. These programming models support features like dynamic creation of machines

(processes), directed messaging using machine references (as opposed to broadcast), and dynamic

communication topology as references to machines can flow through the system (essential for mod-

eling non-determinism like failures). ModP supports the actor [Agha 1986] model of computation

and proposes extensions to make it amenable to compositional reasoning.

These dynamic features have an important impact on assume-guarantee (AG) reasoning, which

typically relies on having explicit component interfaces – e.g., wires between circuits or shared vari-

ables between programs [Alur and Henzinger 1999; Lynch and Tuttle 1987]. In dynamic distributed

systems, interfaces between modules can change as new state machines instances are created, or

communication topology changes and this dynamic behavior depends on the context of a module.

While some formalisms for AG reasoning [Attie and Lynch 2001; Fisher et al. 2011] support such

dynamic features, they do not provide a programming framework for building practical dynamic

distributed systems. Thus, to the best of our knowledge, ModP is the first system that supports

assume-guarantee reasoning in a practical programming language with these dynamic features.

ModP introduces a module system to compositionally build a distributed system. AModP module
is a collection of dynamically-created and concurrently-executing state machines whose semantics

is a collection of traces over externally visible actions. We formalize refinement as trace containment

and define the semantics ofModP modules so that the composition of modules P and Q behaves

like language intersection over the traces of P and Q . ModP also provides operators for hiding
actions of a module, to construct a more abstract module. To ensure that compositional refinement

1ModP stands for Modular P and is available as part of the P programming framework [P-GitHub 2018]. We implemented

our module system on top of the P [Desai et al. 2013] programming language.
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holds in the presence of hiding, an especially challenging problem in a language where permission

(machine-reference) to send events flows dynamically across machines, we use a methodology

based on permission-based capabilities control [Hennessy and Riely 2002; Riely and Hennessy 1998].

Finally,ModP introduces a notion of interfaces as a proxy for state machines. Instead of creating

state machines directly, ModP requires creating a machine indirectly as an instantiation of an

interface, with the binding from an interface to the machine specified explicitly by the programmer.

Separating the specification of the interface binding from the code that instantiates it allows

flexibility in specializing machines and substituting one machine for another.

We have implementedModP on top of P [Desai et al. 2013], a state machine based programming

language that supports the dynamic features required for building realistic asynchronous systems.

P has been used for implementing Windows device drivers [Desai et al. 2013] and for programming

safe robotics systems [Desai et al. 2017a,b]. The ModP compiler generates code for compositional

testing, which involves both safety and refinement testing of the decomposed system.We empirically

demonstrate that ModP’s abstraction-based decomposition helps the existing P systematic testing

(both explicit and symbolic execution) back-ends to scale to large distributed systems.

Fig. 1. Fault-Tolerant Distributed Services

Figure 1 shows two large distributed services that are

representative of challenges in real-world distributed sys-

tems: (i) atomic commit of updates to decentralized, par-

titioned data using two-phase commit [Gray and Lamport

2006], and (ii) replicated data structures such as hash-tables

and lists. These services use State Machine Replication

(SMR) for fault-tolerance. Protocols for SMR, such as Multi-

Paxos [Lamport 1998] and Chain-Replication [van Renesse

and Schneider 2004], in turn use other protocols like leader

election and fault detectors. To evaluate ModP, we imple-

mented each sub-protocol (diagonal lines) as a separate

module and performed compositional reasoning at each

layer of the protocol stack. The AG approach would be to

test each of the sub-protocol in isolation using abstractions of the other protocols. For example,

when testing the two-phase commit protocol, we replace the Multi-Paxos based SMR implemen-

tation with its single process linearizability abstraction. Our evaluation demonstrates that such

abstraction based decomposition provides orders of magnitude test-coverage amplification com-

pared to monolithic testing. Further, our approach for checking refinement through testing is

effective in finding errors in module abstractions. We compare the performance of the hash-table

distributed service against its open-source counterpart by benchmarking it on a cluster.

To summarize, this paper makes the following novel contributions:

1. We present a new theory of compositional refinement and a module system for the assume-

guarantee reasoning of dynamic distributed systems;

2. We implement a programming framework, ModP, that leverages this theory to enable composi-

tional systematic-testing of distributed systems, and

3. UsingModP, we build two fault-tolerant distributed services for demonstrating the applicability

of compositional programming and testing; we present an empirical evaluation of the systematic

testing and runtime performance of these distributed services that combine 7 different protocols.

2 OVERVIEW
We illustrate the ModP framework for compositionally implementing, specifying, and testing

distributed systems by developing a simple client-server application.
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2.1 Basic Programming Constructs in ModP

ModP builds on top of P [Desai et al. 2013], an actor-oriented [Agha 1986] programming language

where actors are implemented as state machines. A ModP program comprises state machines

communicating asynchronously with each other using events accompanied by typed data values.

Each machine has an input buffer, event handlers, and a local store. The machines run concurrently,

receiving and sending events, creating new machines, and updating the local store.

We introduce the key constructs ofModP through a simple client-server application (see Figure 2)

implemented as a collection ofModP state machines. In this example, the client sends a request

to the server and waits for a response; on receiving a response from the server, it computes the

next request to send and repeats this in a loop. The server waits for a request from the client; on

receiving a request, it interacts with a helper protocol to compute the response for the client.

(a) Client State Machine (b) Server State Machine

Fig. 2. A Client-Server Application using ModP State Machines

Events and Interfaces. An event declaration has a name and a payload type associated with it.

Figure 2a (line 2) declares an event eRequest that must be accompanied by a tuple of type RequestType.

Figure 2a (line 6) declares the named tuple type RequestType. ModP supports primitive types like

int, bool, float, and complex types like tuples, sequences and maps. Each interface declaration has

an interface name and a set of events that the interface can receive. For example, the interface

ClientIT declared at Figure 2b (line 3) is willing to receive only event eResponse. Interfaces are like

symbolic names for machines. InModP, unlike in the actor model where an instance of an actor

is created using its name, an instance of a machine is created indirectly by performing new of

an interface and linking the interface to the machine separately. For example, execution of the

statement server = new ServerToClientIT at Figure 2a (line 17) creates a fresh instance of machine
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ServerImpl and stores a unique reference to the new machine instance in server. The link between

ServerToClientIT and ServerImpl is provided separately by the programmer using the bind operation.

Machines. Figure 2a (line 10) declares a machine ClientImpl that is willing to receive event

eResponse, guarantees to send no event other than eRequest, and guarantees to create (by executing

new) no interface other than ServerToClientIT. The body of a state machine contains variables and

states. Each state can have an entry function and a set of event handlers. The entry function of

a state is executed each time the machine transitions into that state. After executing the entry

function, the machine tries to dequeue an event from the input buffer or blocks if the buffer is empty.

Upon dequeuing an event from the input queue of the machine, the attached handler is executed.

Figure 2a (line 30) declares an event-handler in the StartPumpingRequests state for the eResponse event,

the payload argument stores the payload value associated with the dequeued eResponse event. The

machine transitions from one state to another on executing the goto statement. Executing the

statement send t,e,v adds event e with payload value v into the buffer of the target machine t.
Sends are buffered, non-blocking, and directed. For example, the send statement Figure 2a (line

25) sends eRequest event to the machine referenced by the server identifier. In ModP, the type of a
machine-reference variable is the name of an interface (Section 3.2).

Next, we walk through the implementation of the client (ClientImpl) and the server (ServerImpl)

machines in Figure 2. Let us assume that the interfaces ServerToClientIT, ClientIT, and HelperIT are

programmatically linked to the machines ServerImpl, ClientImpl, and HelperImpl respectively (we

explain these bindings in Section 2.2). A fresh instance of a ClientImpl machine starts in the Init

state and executes its entry function; it first creates the interface ServerToClientIT that leads to the

creation of an instance of the ServerImpl machine, and then transitions to the StartPumpingRequests

state. In the StartPumpingRequests state, it sends a eRequest event to the server with a payload value

and then blocks for a eResponse event. On receiving the eResponse event, it computes the next value

to be sent to the server and transitions back to the StartPumpingRequests state. The this keyword is

the “self” identifier that references the machine itself. The ServerImpl machine starts by creating

the HelperImpl machine and moves to the WaitForRequests state. On receiving a eResponse event, the

server interacts with the helper machine to compute the result that it sends back to the client.

Dynamism. Two key features lead to dynamism in this model of computation, making com-

positional reasoning challenging: (1) Machines can be created dynamically during the execution

of the program using the new operation that returns a reference to the newly-created machine.

(2) References to machines are first-class values, and the payload in the sent event can contain

references to other machines. Hence, the communication topology can change dynamically during

the execution of the program.

2.2 Compositional Programming using ModP Modules

Fig. 3. Modular Client-Server Implementation

ModP allows the programmer to decompose a

complex system into simple components where

each component is a ModP module. Figure 3

presents a modular implementation of the client-

server application. A primitive module in ModP
is a set of bindings from interfaces to state ma-

chines. ServerModule is a primitive module con-

sisting of machines ServerImpl and HelperImpl

where the ServerImpl machine is bound to the

ServerToClientIT interface and the HelperImpl ma-

chine is bound to the HelperIT interface. The com-

piler ensures that the creation of an interface
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leads to the creation of a machine to which it binds. For example, creation of the ServerToClientIT

interface (executing new ServerToClientIT) by any machine inside the module or by any machine in

the environment (i.e., outside ServerModule) would lead to the creation of an instance of ServerImpl.

The client-server application (Figure 2) can be implemented modularly as two separate modules

ClientModule and ServerModule; these modules can be implemented and tested in isolation. Modules

in ModP are open systems, i.e., machines inside the module may create interfaces that are not

bound in the module. Similarly, machines may send events to or receive events from machines

that are not in the module. For example, the ClientImpl machine in ClientModule creates an interface

ServerToClientIT that is not bound to any machine in ClientModule, it sends eRequest and receives

eResponse from machines that are not in ClientModule.

Composition inModP (denoted | |) is supported by type checking. If the composition type checks

(Section 4) then the composition of modules behaves like language intersection over the traces of

the modules. The compiler ensures that the joint actions in the composed module (ClientModule ||

ServerModule) are linked appropriately, e.g., the creation of the interface ServerToClientIT (Figure 2a

line 18) in ClientModule is linked to ServerImpl in ServerModule and all the sends of eRequest events are

enqueued in the corresponding ServerImpl machine. Note that the indirection enabled by the use of

interfaces is critical for implementing the key feature of substitution required for modular program-

ming, i.e., the ability to seamlessly replace one implementation module with another. For example,

ServerModule' (Figure 3 line 11) represents a module where the server protocol is implemented by a

different machine ServerImpl'. In module ClientModule || ServerModule', the creation of an interface

ServerToClientIT in the client machine is linked to machine ServerImpl'. The substitution feature is

also critical for compositional reasoning, in which case, an implementation module is replaced by

its abstraction. The compiler generates C code for the module in the implementation declaration.

2.3 Compositional Testing using ModP Modules
Monolithic testing of large distributed systems is prohibitively expensive due to an explosion of

behaviors caused by concurrency and failures. TheModP approach to this problem is to use the

principle of assume-guarantee reasoning for decomposing the monolithic system-level testing

problem into simpler component-level testing problems; testing each component in isolation using

abstractions of the other components.

Spec machines. In ModP, a programmer can specify temporal properties via specification

machines (monitors). spec s observes E1, E2 { .. } declares a specification machine s that observes
events E1 and E2. If the programmer chooses to attach s to a module M, the code in M is instrumented

automatically to forward any event-payload pair (e,v) to s if e is in the observes list of s; the
handler for event e inside s executes synchronously with the delivery of e . The specification

machines observe only the output events of a module. Thus, specification machines introduce a

publish-subscribe mechanism for monitoring events to check temporal specifications while testing

a ModP module. The module constructor assert s in P attaches specification machine s to module

P. In Figure 4a, ReqIdsAreMonoInc and ResIdsAreMonoInc are specification machines observing events

eRequest and eResponse to assert the safety property that the reqId and resId in the payload of these

events are always monotonically increasing. Note that ReqIdsAreMonoInc is a property of the client

machine and ResIdsAreMonoInc is a property of the server machine.

InModP, abstractions used for assume-guarantee reasoning are also implemented as modules.

For example, AbstractServerModule is an abstraction of the ServerModule where the AbstractServerImpl

machine implements an abstraction of the interaction between ServerImpl and HelperImpl machine.

The AbstractServerImpl machine on receiving a request sends back a random response.

ModP enables decomposing the monolithic problem of checking: (assert ReqIdsAreMonoInc,

ResIdsAreMonoInc in ClientModule || ServerModule) into four simple proof obligations.ModP allows
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(a) Abstraction and Specifications (b) Test Declarations for Compositional Testing

Fig. 4. Compositional Testing of the Client-Server Application using ModP Modules

the programmer to write each obligation as a test-declaration. The declaration test tname: P

introduces a safety test obligation that the executions of module P do not result in a failure/error.

The declaration test tname: P refines Q introduces a test obligation that module P refines module

Q. The notion of refinement in ModP is trace-containment based only on externally visible actions,

i.e., P refines Q, if every trace of P projected onto the visible actions of Q is also a trace of Q.
ModP automatically discharges these test obligations using systematic testing. Using the theory

of compositional safety (Theorem 5.3), we decompose the monolithic safety checking problem

into two obligations (tests) test0 and test1 (Figure 4b). These tests use abstractions to check that

each module satisfies its safety specification. Note that interfaces and the programmable bindings

together enable substitution during compositional reasoning. For example, ServerToClientIT gets

linked to ServerImpl in implementation but to its abstraction AbstractServerImpl during testing.

Meaningful testing requires that these abstractions used for decomposition be sound. To this

end,ModP module system supports circular assume-guarantee reasoning (Theorem 5.4) to validate

the abstractions. Tests test2 and test3 perform the necessary refinement checking to ensure the

soundness of the decomposition (test0,test1). The challenge addressed by our module system is

to provide the theorems of compositional safety and circular assume-guarantee for a dynamic

programming model ofModP state machines.ModPmodule system also provides module construc-

tors like hide for hiding events (interfaces) and rename for renaming of conflicting actions for more

flexible composition. Hide operation introduces private events (interfaces) into a module, it can

be used to convert some of the visible actions of a module into private actions that are no longer

part of its visible trace. For example, assume that modules AbstractServerModule and ServerModule use

event X internally for completely different purposes. In that case, the refinement check between

them is more likely to hold if X is not part of the visible trace of the abstract module. Figure 4b (line

28-33) show how hide can be used in such cases. Ensuring compositional refinement for a dynamic

language likeModP is particularly challenging in the presence of private events (Section 4.2)
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2.4 Roadmap
ModP’s module system supports two key theorems for the compositional reasoning of distributed

systems: Compositional Safety (Theorem 5.3) and Circular Assume-Guarantee (Theorem 5.4). We use

Section 3 through Section 5.1 to build up to these theorems. The module system formalized in this

paper can be adapted to any actor-oriented programming language provided certain extensions can

be applied. We describe these extensions that ModP state machines make to the P state machines

in Section 3. When defining the operational semantics of a module and to ensure that composition
is intersection, it is essential that constructed modules be well-formed. Section 4 presents the

type-checking rules to ensure well-formedness for a module. Section 5.1 presents the operational

semantics of a well-formed module. Finally, we describe how we apply the theory of compositional

refinement to test distributed systems (Section 6) and present our empirical results (Section 8).

3 ModP STATE MACHINES
A module inModP is a collection of the dynamic instances ofModP state machines. In this section,

we describe the extensions ModP state machines makes to P state machines in terms of syntactic

constructs and semantics. These extensions to P state machines are required for defining the

operational semantics of ModP modules and making them amenable to compositional reasoning.

(Extension 1): we add interfaces that are symbolic names for machines. In ModP, as described
in Section 2.1, an instance of a machine is created indirectly by performing new of an interface

(instead of new of a machine in P).
(Extension 2): we extend Pmachines with annotations declaring the set of receive, send and create

actions the dynamic instance of that machine can perform. These annotations are used to statically

infer the actions a module can perform based on the actions of its comprising machines.

(Extension 3): we extend the semantics of send in P to provide the guarantee that aModP state

machine can never receive an event (from any other machine) that is not listed in its receive set.

This is achieved by extending machine identifiers with permissions (more details in Section 3.2).

3.1 Semantics of ModP State Machines
Let E represent the set of names of all the events. Permissions is a nonempty subset of E; Let K
represent the set of all permissions (2

E \ {∅}). Let I and M represent the sets of names of all

interfaces and machines, respectively; these sets are disjoint from each other. Let S represent the

set of all possible values the local state of a machine could have during execution. The local state

of a machine represents everything that can influence the execution of the machine, including

control stack and data structures. The buffer associated with a machine is modeled separately. Let

B represent the set of all possible buffer values. The input buffer of a machine is a sequence of

(e,v) ∈ E × V pairs, where V represent the set of all possible payloads that may accompany any

event in a send action. Let Z be the set of all the machine identifiers.

AModP state machine is a tuple (MRecvs,MSends,MCreates, Rem, Enq,New, Local) where:
1. MRecvs ⊆ E is the nonempty set of events received by the machine.

2. MSends ⊆ E is the set of all events sent by the machine.

3. MCreates ⊆ I is the set of interfaces created by the machine.

4. Rem ⊆ S × B ×N × S is the transition relation for removing a message from the input buffer. If

(s,b,n, s ′) ∈ Rem, then the n-th entry in the input buffer b is removed and the local state moves

from s to s ′.

5. Enq ⊆ S × Z × E × V × S is the transition relation for sending a message to a machine. If

(s, id, e,v, s ′) ∈ Enq, then event e with payload v is sent to machine id and the local state of the

sender moves from s to s ′.
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6. New ⊆ S × I × S is the transition relation for creating an interface. If (s, i, s ′) ∈ New, then the

machine linked against interface i is created and the machine moves from s to s ′.

7. Local ⊆ S × Z × S × Z is the transition relation for local computation in the machine. The

state of a machine is a pair (s, id) ∈ S ×Z. The first component s is the machine local-state. The

second component id is a placeholder used to store the identifier of a freshly-created machine

or to indicate the target of a send operation. If (s, id, s ′, id ′) ∈ Local, then the state can move

from (s, id) to (s ′, id ′), which allows us to model the movement of machine identifiers from s to
id and vice-versa. The role of id will become clearer when we use it to define the operational

semantics of the module (Section 5.1).

We refer to components of machinem ∈ M as MRecvs(m), MSends(m), MCreates(m), Rem(m),
Enq(m),New(m), and Local(m) respectively.We use IRecvs(i) to refer to the receive set corresponding
to an interface i ∈ I.

3.2 Machine Identifiers with Permissions
A machine can send an event to another machine only if it has access to the receiver’s machine

identifier. The capability of a machine to send an event to another machine can change dynamically

as machine identifiers can be passed from one machine to another. There are two key properties

required for the compositional reasoning of communicating state machines using our module

system: (1) a machine never receives an event that is not in its receive set, this property is required

when formalizing the open module semantics of ModP modules and its receptiveness to input

events (Section 5.1); (2) the capability to send a private (internal) event of a module does not leak
outside the module, this property is required to ensure that compositional refinement in the presence

of private events (Section 4.2). These properties are particularly challenging in the presence of

machine-identifier that can flow freely. Our solution is similar in spirit to permissions based

capability control for π -calculus [Hennessy and Riely 2002; Pierce and Sangiorgi 1996] where

permissions are associated with channels or locations and enforced using type-systems.

We concretize the set of machine identifiers Z as I × N × K . For our formalization, we are

interested in machine identifiers that are embedded inside the data structures in a machine local-

state s ∈ S or value v ∈ V . Instead of formalizing all datatypes in ModP, we assume the existence

of a function ids such that ids(s) is the set containing all machine identifiers embedded in s and
ids(v) is the set containing all machine identifiers embedded in v . An identifier (i,n,α) ∈ Z refers

to the n-th instance of an interface represented by i ∈ I. We refer to the final component α of

a machine identifier as its permissions. The set α represents all the events that may be sent via

this machine identifier using the send operation. The creation of an interface I returns a machine

identifier (I,n, β) ∈ Z referencing to the n-th instance of interface Iwhere β represents the receive

set associated with the interface I (β = IRecvs(I)). TheModP compiler checks that if an interface I
is bound to M in a module, then the received events of I are contained in the received events of M
(IRecvs(I) ⊆ MRecvs(M)). Hence, the events that can be sent using an identifier is a subset of the

events that the machine can receive. This mechanism ensures that a machine never receives an

event that it has not declared in its receive set. Note that the permissions embedded in a machine

identifier control the capabilities associated with that identifier.

In order to control the flow of these capabilities, ModP requires the programmer to annotate

each event with a set A ∈ 2
K
of allowed permissions. For an event e , the set A(e) represents any

permission that the programmer can put inside the payload accompanying e i.e., if v represents

any legal payload value with e then ∀(_, _,α) ∈ ids(v),α ∈ A(e). In other words, A(e) represents
the set of permissions that can be transferred from one machine to another using event e .
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Finally, the modified send operation send t,e,v succeeds only if: (1) e is in the permissions

of machine identifier t, to ensure t receives only those events that are in its receives set, and

(2) all permissions embedded in v are in A(e), the send fails otherwise (captured as the (SendOk)

condition when defining the semantics of send in Section 5.1). This changed semantics of send
based on permission-based capability control plays a crucial role in ensuring well-formedness of

the hide operation that adds private events to a module (Section 4.2).

To statically check the permission that is passed using an event, we need to reflect the permission

of a machine-reference stored in a variable in the variable’s type. Recollect that, the type of a

machine-reference variable is the name of an interface (Figure 2). An interface type represents the

set of machine-identifiers whose permission is the receives events set of the interface. In other

words, the type of a machine-identifier represents the permission stored in it. Thus, the static type

of the payload associated with an event can be used to infer the permissions embedded in it and

the check (2) above for the correctness of the send operation can be performed statically. We do

not present the state-machine level typing rules for performing these checks statically because of

space constraints; instead, they are described as dynamic checks when presenting the operational

semantics in Section 5.1.

Remark 3.1. The module system formalized in this paper can be adopted to any actor-oriented

programming language whose semantics is as described in Section 3.1 and can be extended with

the three features (Extension 1) − (Extension 3).

4 MODULES
ModP seeks to manage the complexity of a distributed system by designing it in a structured way,

at different levels of abstractions and modularly as the composition of interacting modules. Figure 5

presents the expression language supported by ModP module system for module construction.

α ∈ 2
E β ∈ 2

I i, i ′, i1, ., ik ∈ I m1, .,mk ∈ M
P ,Q ∈ ModuleExpr ::= bind i1 →m1, .., ik →mk

| P ∥ Q
| hide α in P
| hide β in P
| rename i → i ′ in P

Fig. 5. Module constructors

The bind constructor creates a primitive

module as a collection of machinesm1, . . . ,mk
bound to interfaces i1, . . . , ik respectively (syn-
tax is a bit different from the examples in Sec-

tion 2). The composition (∥) constructor builds
a complexmodule from simpler ones. Thehide

constructor creates an abstraction of a mod-

ule, by converting some of its visible actions

to private actions. The rename operation enables reuse of modules (and resolution of conflicting

actions) when composing modules to create larger ones. The module language enables program-

matic construction of modules, reuse of module expressions and ease of assembling modules for

compositional reasoning (Section 5.2).

Well-formed module. In theModP module system, a module P is a syntactic expression and

its well-formedness is checked using the judgment P ⊢ EPP , IPP , IP , LP , ERP , ESP , ICP . If module P
satisfies the judgment then we read it as: Module P is well-formed with private events EPP , private
interfaces IPP , interface definition map IP , interface link map LP , events received ERP , events sent ESP ,
and interfaces created ICP . The judgment derives the components on the right-hand side which are

used for defining the operational semantics of a well-formed module (Section 5.1). We use dom(x)
and codom(x) to refer to the domain and codomain of any map x .

We next describe the components on the right-hand side of the judgment:

1. Private events. EPP ∈ 2
E
represents the private events for module P , these events must not

cross the boundary of module P i.e. if a machine in P sends event e ∈ EPP , then the target must
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be some machine in P and, if a machine in P receives e ∈ EPP , the sender must be some machine

in P . The send of a private event is an internal (invisible) action of a module.

2. Private interfaces. IPP ∈ 2
I
represents the interfaces that are declared private in P ; the creation

of any interface in IPP is an internal (invisible) action of P .

3. Interface definition map. IP ∈ I → M interface definition map that binds an interface name i
to a machine name IP [i]. Recollect that in theModPmodel of computation, dynamic instances of

machines are created indirectly using interfaces. An interface definition map (IP ) is a collection
of bindings from interface names to machine names. These bindings are initialized using the

bind operation, so that if (i,m) ∈ IP then the creation of an interface i in module P leads to the

creation of an instance ofm.

4. Interface link map. LP ∈ I → I → I is the interface link map that maps each interface

i ∈ dom(IP ) to a machine link map that binds interfaces created by the code of machine IP [i]
to an interface name. If the statement new x is executed by an instance of machine IP [i], an
interface actually created in lieu of the interface name x is provided by the machine specific link

map LP [i]. If (x ,x ′) ∈ LP [i], then the compiler interprets x in statement new x in the code of

machine IP [i] as creation of interface x ′
, creating an instance of machine IP [x ′].

The last three components of the judgment can be inferred using the first four components:

5. Events received. ERP ∈ 2
E
represent the set of events received by module P . It is inferred as the

set of non-private events received by machines in P , ERP =
⋃

m∈codom(IP ) MRecvs(m) \ EPP .
6. Events sent. ESP ∈ 2

E
represent the set of events sent by module P . It is inferred as the set of

non-private events sent by machines in P , ESP =
⋃

m∈codom(IP ) MSends(m) \ EPP .
7. Interfaces created. ICP ∈ 2

I
represent the set of interfaces created by module P . It is inferred

as the set of interfaces created by machines in P (interpreted based on its link map), ICP =⋃
(i,m)∈IP,x ∈MCreates(m){LP [i][x]}.

Exported interfaces. The domain of the interface definition map after removing the private interfaces

is the set of exported interfaces for module P ; these interfaces can be created either by P or its

environment.

Input and output actions. The input events of module P are the events that are received but not

sent by P i.e. ERP \ ESP . The input interfaces of P are the set of interfaces that are exported but

not created by P i.e. dom(IP ) \ (IPP ∪ ICP ). The output events of P are the sent events i.e. ESP and

the output interfaces are the created non-private interfaces of P i.e. ICP \ IPP . Informally, the input
actions of a module is the union of its input events and input interfaces, the output actions of a
module is the union of its output events and output interfaces (formally defined in Definition 5.2).

In the rest of this section, we describe the various module constructors and present the static

rules to ensure that the constructed module satisfies: (1) well-formedness conditions (WF1 − WF3)
required for defining the semantics of a module, and (2) the compositionality Theorems 5.1- 5.2.

Note. For simplicity, when describing the static rules we do not provide the derivation for the

last three components of the judgment as they can be inferred, but we use them above the line.

4.1 Primitive Module
InModP, a primitive module is constructed using the bind operation. Programmatically initializing

IP using bind operation enables linking the creation of an interface I to either a concrete machine

Impl for execution or an abstract machine Abs for testing, a key feature required for substitution

during compositional reasoning.

(Bind)

f = {(i1,m1), . . . , (in,mn )} f ⊆ I → M(b1) ∀(i,m) ∈ f . IRecvs(i) ⊆ MRecvs(m)(b2)

bind i1 →m1, . . . , in →mn ⊢ {}, {}, f , {(i, x, x ) | (i,m) ∈ f ∧ x ∈ MCreates(m)}
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Rule Bind presents the rule for bind i1 →m1, . . . , ik →mk that constructs a primitive module by

binding each interface ik to machinemk for k ∈ [1,n]. These bindings are captured in f ; condition
(b1) checks that f is a function. Condition (b2) checks that the received events of an interface are

contained in the received events of the machine bound to it (ensures (WF1) below). The resulting

module does not have any private events and interfaces. The function f is the interface definition

map and the interface link map for interface i ∈ dom(f ) contains the identity binding for each

interface created by f (i) (ensures (WF2) below). The first entry for name x ever added to LP [i] is
the identity map (x ,x); subsequently, if interface x is renamed to x ′

(using rename constructor),

this entry is updated to (x ,x ′).
Well-formedness condition (WF1) helps ensure that a machine-identifier obtained by creating an

interface can be used to send only those events that are in the receives set of the target machine

((SendOk) in Section 3.2).

(WF1) Interface definition map is consistent: For each (i,m) ∈ IP , we have IRecvs(i) ⊆ MRecvs(m).
Well-formedness condition (WF2) ensures that the link map lookups used during the create action

always succeed.

(WF2) Interface link map is consistent: The domains of IP and LP must be identical and for each
(i,m) ∈ IP and x ∈ MCreates(m), we have x ∈ dom(LP [i]).

4.2 Hiding Events and Interfaces
Hiding events and interfaces in a module allow us to construct a more abstract module [Attie

and Lynch 2001]. There are two reasons to construct a more abstract version of a module P by

hiding events or interfaces. First, suppose we want to check that another module ServerModule

refines AbstractServerModule. But the event X is used for internal interaction among machines, for

completely different purposes, in both ServerModule and AbstractServerModule. Then, the check that

ServerModule refines AbstractServerModule is more likely to hold since sending of X is not a visible

action of AbstractServerModule. Second, hiding helps make a module more composable with other

modules. To compose two modules, the sent events and created interfaces of one module must

be disjoint from the sent events and created interfaces of the other (Section 4.3). This restriction

is onerous for large systems consisting of many modules, each of which may have been written

independently by a different programmer. To address this problem, we relax disjointness for private

events and interfaces, thus allowing incompatible modules to become composable after hiding

conflicting events and interfaces.

To illustrate hiding of an event and an interface, we revisit the ServerModule in Figure 3. To legally

hide an event in a module, it must be both a sent and received event of the module.

module HE_Server = hide eProcessReq , eReqSuccess , eReqFail in ServerModule

Module HE_Server is well-formed and eProcessReq, eReqSuccess, eReqFail become private events

in it. A send of event eProcessReq is a visible action in ServerModule but a private action in HE_Server.

To hide an interface, it must be both an exported and created interface of that module.

module HI_Server = hide HelperIT in HE_Server

Module HI_Server is well-formed and interface HelperIT becomes a private interface in it. Creation of

interface HelperIT is a visible action in HE_Server but a private action in HI_Server.Hiding makes events
and interfaces private to a module and converts output actions into internal actions. All interactions
between the server and the helper machine in HI_Server are private actions of the module.

Avoiding private permission leakage. Not requiring disjointness of private events creates a

possibility for programmer error and a challenge for compositional refinement. When reasoning

about a module P in isolation, only its input events (that are disjoint from private events) would be

considered as input actions. This is based on the assumption that private events of a module are
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exchanged only within a module, in other words, a private event of a module can never be sent by

any machine outside the module to any machine inside the module.

Recollect that a machine can send only those events to a target machine that are in the permission

set of the reference to the target machine (Section 3.2). Suppose a machine M in module P has a

private event e in its set of received events. Any machine that possesses a reference to an instance

of M could send e to this instance. If such a reference were to leak outside the module P to a machine

in a different module, it would create an obstacle to reasoning about P separately (and proving

the compositionality theorems for a module with private events), since the environment may now

send private events targeted at a machine inside P. ModP ensures that such leakage of a machine

reference with permissions containing a private event cannot happen.

In ModP, there are two ways for permissions to become available to a machine: (1) by creating

an interface, or (2) by sending permissions to the machine in the payload accompanying some

event. To tackle private permission leakage through (1), ModP requires that an input interface

not have a private event in its set of received events so that an interface with private permissions

cannot be created from outside the module. This is ensured by the condition (he2) below. To tackle

private permission leakage through (2), ModP enforces that (a) each send of event e adheres to the

specification (SendOk) in Section 3, and (b) the set of private events is disjoint from any permission

in A(e) for any non-private event e (ensure (WF3) below). Together, these two checks ensure that

permission containing a private event does not leak outside the module through sends.

(WF3) Permissions to send private events does not leak: For all e ∈ ERP ∪ ESP and α ∈ A(e), we
have α ∩ EPP = ∅. This is a static check asserting the capabilities that can leak outside the module.

(HideEvent) (A∆B = (A \ B) ∪ (B \ A))
P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP α ⊆ ERP ∩ ES(he1)P

∀x ∈ ICP∆dom(IP ). IRecvs(x ) ∩ α = ∅(he2)
∀e ∈ (ERP ∪ ESP ) \ α . ∀α ′ ∈ A(e). α ∩ α ′ = ∅(he3)

hide α in P ⊢ EPP ∪ α, IPP , IP, LP

(HideInterface)

P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP β ⊆ dom(IP ) ∩ IC(hi1)
P

hide β in P ⊢ EPP , IPP ∪ β, IP, LP

Rule HideEvent handles the hiding of a set of events α in module P . This rule adds α to EPP .
Condition (he1) checks all events in β are both sent and received by module P ; this condition is

required to ensure that the resulting module is an abstraction of P . Conditions (he2) and (he3)

together ensure that once an event e becomes private, any permission containing e cannot cross
the boundary of the resulting module (ensure (WF3)). Rule HideInterface handles the hiding of a

set of interfaces β in module P . This rule adds β to IPP . Condition (hi1) is similar to the condition

(he1) of rule HideEvent; this condition ensures that the resulting module is an abstraction of P .

4.3 Module Composition
Module composition inModP enforces an extra constraint that the output actions of the modules

being composed are disjoint. The requirement of output disjointness i.e. output actions of P and Q
be disjoint in order to compose them is important for compositional reasoning, especially to ensure

that composition is intersection (Theorem 5.1). For defining the open system semantics of a module

P (Section 5.1), we require P to be receptive only to its input actions (sent by its environment). In

other words, for the input actions, P assumes that its environment will not send it any event sent

by P itself. Similarly, P assumes that its environment will not create an interface that is created by

P itself. Any input action of P that is an output action of Q is an output action of P ∥ Q and hence

not an input action of P ∥ Q . This property ensures that by composing P with a module Q (that

outputs some input action of P), we achieve the effect of constraining the behaviors of P. Thus,
the composition is a mechanism used to introduce details about the environment of a component,

which constrains its behaviors (composition is intersection), and ultimately allows us to establish

the safety properties of the component.
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However, composition inevitably makes the size of the system larger thus making the testing

problem harder. Hence, we need abstractions of components to allow precise yet compact modeling

of the environment. If one component is replaced by another whose traces are a subset of the

former, then the set of traces of the system only reduces, and not increases, i.e., no new behaviors

are added (trace containment is monotonic with respect to composition Theorem 5.2). This permits

refinement of components in isolation.

(Composition) (A∆B = (A \ B) ∪ (B \ A))
P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP Q ⊢ EPQ , IPQ , IQ, LQ , ERQ , ESQ , ICQ dom(IP ) ∩ dom(IQ) = ∅(c1)

(ERP ∪ ERQ ∪ ESP ∪ ESQ ) ∩ (EPP ∪ EPQ ) = ∅(c2) ∀x ∈ (dom(IP )∆ICP ) ∪ (dom(IQ)∆ICQ ). IRecvs(x ) ∩ (EPP ∪ EPQ ) = ∅(c3)
∀e ∈ ERP ∪ ERQ ∪ ESP ∪ ESQ . ∀α ∈ A(e). α ∩ (EPP ∪ EPQ ) = ∅(c4) ICP ∩ ICQ = ∅(c5) ESP ∩ ESQ = ∅(c6)

P ∥ Q ⊢ EPP ∪ EPQ , IPP ∪ IPQ , IP ∪ IQ, LP ∪ LQ

Rule Composition handles the composition of P andQ . Condition (c1) enforces that the domains

of IP and IQ are disjoint, thus preventing conflicting interface bindings. Conditions (c2) ensures that

the input and output actions of P are not hidden by private events of Q and vice-versa. Conditions

(c3) and (c4) together check that private permissions of P ∥ Q do not leak out. Condition (c3)

checks that creation of an input interface of P does not leak permission containing a private event

ofQ and vice-versa. Condition (c4) checks that non-private events sent or received by P do not leak

a permission containing a private event of Q and vice-versa (ensure (WF3)). Condition (c5) checks

that created interfaces are disjoint; condition (c6) checks that sent events are disjoint. Composition

is associative and commutative.

Example. If the conditions (c1) to (c6) hold then the composition of two modules is a union of

its components. The composition operation acts as a language intersection. Consider the example

of ClientModule || ServerModule from Figure 3. The interface ServerToClientIT is an input interface

of ServerModule but becomes an output (no longer input) interface of ClientModule || ServerModule.

Similarly, eResponse is an input event of ClientModule but becomes an output event of the composed

module. Also, the union of the link-map and the interface definitionmaps ensures that the previously

unbounded interfaces in link-map are appropriately bound after composition.

4.4 Renaming Interfaces

Fig. 6. Renaming Interfaces Module Constructor

The rename module constructor allows us to re-

name conflicting interfaces before composition.

The example in Figure 6 builds on top of the

Client-Server example in Section 2. In module

ServerModule', the interface ServerToClientIT' is

bound to machine ServerImpl. The creation of

HelperIT interface (Figure 2b line 14) in ServerImpl

machine is bound to HelperImpl machine in

both ServerModule and ServerModule'. But, it is not

possible to compose modules ServerModule and

ServerModule' because of the conflicting bindings of interface HelperIT (rule Composition (c1)).

In Figure 6 (line 12), the interface name HelperIT is renamed to HelperIT'. The rename module

constructor updates the interface binding (HelperIT->HelperImpl) to (HelperIT' -> HelperImpl) and the

interface link map entry of (ServerToClientIT'->HelperIT->HelperIT) to (ServerToClientIT'->HelperIT

->HelperIT'). As a result, the composition of modules ServerModule and ServerModule' is now possible.

Recollect that each module has an interface link map (Section 4) that maintains a machine specific

mapping from the interface created by the code of a machine to the actual interface to be created in

lieu of the new operation. The interface link map plays a critical role enable renaming of interfaces

without changing the code of the involved machines. The execution of new HelperIT (Figure 2b line
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14) in ServerImpl still leads to the creation of HelperImpl machine because of the indirection in the

interface link map, and the corresponding visible action is creation of interface HelperIT'.

(Rename)

P ⊢ EPP , IPP , IP, LP , ERP , ESP , ICP i ∈ dom(IP ) ∪ ICP (r1) IRecvs(i) = IRecvs(i′)(r2)
i′ ∈ I \ (dom(IP ) ∪ ICP )(r3) A = {x | x ′ ∈ IPP ∧ x = ite(x ′ = i, i′, x ′)}(r4) B = {(x, y) | (x ′, y) ∈ IP ∧ x = ite(x ′ = i, i′, x ′)}(r5)

C = {(x, y, z) | (x ′, y, z′) ∈ LP ∧ x = ite(x ′ = i, i′, x ′) ∧ z = ite(z′ = i, i′, z′)}(r6)
rename i → i′ in P ⊢ EPP , A, B, C

Rule Rename handles the renaming of interface i to i ′ in module P . Condition (r1) checks that i
is well-scoped; the set of dom(IP ) ∪ ICP is the universe of all interfaces relevant to P . Condition
(r2) checks that the set of received events of i and i ′ are the same. Condition (r3) checks that i ′

is a new name different from the current set of interfaces relevant to P . Together with condition

(b2) in rule Bind, this condition ensures that the set of received events of an interface is always a

subset of the set of received events of the machine bound to it. Condition (r4) calculates in A the

renamed set of private interfaces. Condition (r5) calculates in B the renamed interface defintion

map. Condition (r6) calculates in C the renamed interface link map.

5 COMPOSITIONAL REASONING USING ModP MODULES
The ModP module system allows compositional reasoning of a module based on the principles of

assume-guarantee reasoning. For assume-guarantee reasoning, the module system must guarantee

that composition is intersection (Theorem 5.1), i.e., traces of a composed module are entirely deter-

mined by the traces of the component modules. We achieve this by first ensuring that a module

is well-formed (Section 4), and then defining the operational semantics (as a set of traces) of a

well-formed module such that its trace behavior (observable traces) satisfies the compositional

trace semantics required for assume-guarantee reasoning.

In Section 4, a ModP module is described as a syntactic expression comprising of the module

constructors listed in Figure 5. If the static rules are satisfied then any constructed module P is

well-formed and can be represented by its components (EPP , IPP , IP , LP , ERP , ESP , ICP ). In this

section, we present the operational semantics of a well-formed module (Section 5.1) that help

guarantee the key compositionality theorems described in Section 5.2.

5.1 Operational Semantics of ModP Modules
A key requirement for assume-guarantee reasoning [Alur et al. 1998; Lynch and Tuttle 1987]

is to consider each component as an open system that continuously reacts to input that arrives

from its environment and generates outputs. The transitions (executions) of a module include

non-deterministic interleaving of possible environment actions. Each component must be modeled

as a labeled state-transition system so that traces of the component can be defined based only on

the externally visible transitions of the system.

We refer to components on the right hand side of the judgment P ⊢ EPP , IPP , IP , LP , ERP , ESP , ICP
(Section 4) when defining the operational semantics of a well-formed module P . We present the

open system semantics of a well-formed module P as a labeled transition system.

Configuration. A configuration of a module is a tuple (S,B,C): (1) The first component S is a

partial map from I × N to S × Z. If (i,n) ∈ dom(S), then S[i,n] is the state of the n-th instance

of machine IP [i]. The state S[i,n] has two components, local state s ∈ S and a machine identifier

id ∈ Z (as described in Section 3.1). (2) The second component B is a partial map from I × N to

B. If (i,n) ∈ dom(B), then B[i,n] is the input buffer of the n-th instance of the machine IP [i]. (3)
The third component C is a map from I to N. C[i] = n means that there are n dynamically created

instances of interface i .
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We present the operational semantics of a well-formed module P as a transition relation over its

configurations (Figure 7). Let (SP ,BP ,CP ) represent the configuration for a module P . A transition is

represented as (SP ,BP ,CP )
a−→ (S ′P ,B′

P ,C
′
P ) ∪ {error} where a is the label on a transition indicating

the type of step being taken. The initial configuration of any module P is defined as (S0P ,B0

P ,C
0

P )
where S0P and B0

P are empty maps, and C0

P maps each element in its domain (I) to 0.

Rules for local computation: Rules (R1)-(R2) present the rules for local computation of a ma-

chine. Rule Internal picks an interface i and instance number n and updates S[i,n] according to

the transition relation Local, leaving B andC unchanged. The map IP is used to obtain the concrete

machine corresponding to the interface i . Rule Remove-Event updates S[i,n] and B[i,n] according
to the transition relation (s,b, pos, s ′) ∈ Rem(IP [i]), the entry in pos-th position of B[i,n] is removed

and the local state in S[i,n] is updated to s ′ leaving the machine identifier (id) unchanged. The
transition for both these rules is labeled with ϵ to indicate that the computation is local and is an

internal transition of the module P .
Rules for creating interfaces: Let s0 ∈ S represent a state such that ids(s0) = ∅. Let b0 ∈ B be

the empty sequence over E ×V . Rules (R3)-(R8) present the rules for interface creation. In all the

rules, IP is used to look-up the machine name corresponding to an interface bound in module P .
The environment of P triggers the first two rules, and the last four are triggered by P itself. The rule

Environment-Create creates an interface that is neither created nor exported by P ; consequently,
it updates C by incrementing the number of instances of i but leaves S and B unchanged. The rule

Input-Create creates an interface i exported by P that is not created by P . The instance number of

the new interface is C[i]; its local-store is initialized to (s0, id) where id in this case stores the “self”

identifier that references the machine itself. Note that the environment cannot create an interface

that is also created by P , which is based on the key assumption of output disjointness required for

compositional reasoning (Section 4.3). The rule Create-Bad creates a transition into error if the
interface i ′ being created bymachine (i,n) violates the predicateCreateOk(m,x) = x ∈ MCreates(m).
Thus, machine (i,n) may only create machines in MCreates(IP [i]).

We use machine (i,n) to refer to the n-th instance of the machine IP [i]. Output-Create-Outside
allows machine (i,n) to create an interface i ′′ that is not implemented inside P , indicated by

i ′′ < dom(IP ). Create of interface i ′′ will get bound to an appropriate machine when P is composed

with another module Q that has binding for i ′′ i.e. i ′′ ∈ dom(IQ). The predicate CreateOk(m,x) =
x ∈ MCreates(m) checks that if a machinem performs new x then x belongs to its creates set. Thus,

machine (i,n) may only create machines in MCreates(IP [i]). A well-formed module satisfies the

condition (WF1) together with the property that machines cannot create identifiers out of thin air

to guarantee that the set of permissions in any machine identifier is a subset of the received events

of the machine referenced by that identifier.

The rule Output-Create-Inside allows the creation of an interface that is exported by P . An
interesting aspect of this rule is that the machine identifier made available to the creator machine

has permission IRecvs(i ′′) but the “self” identifier of the created machine is the entire receive set

which may contain some private events in addition to all events in IRecvs(i ′′). Allowing extra

private events in the permission of the “self” identifier is useful if the machine wants to send

permissions to send private events to a sibling machine inside P . In all these rules, the link map

(LP ) is used to look up the interface i ′′ to be created corresponding to new i ′. The condition (WF2)

holds for any well-formed module and guarantees that this lookup always succeeds.

Rules for sending events: Rules (R9)-(R13) present the rules for sending events. The environment

of P triggers the first rule, and the last two are triggered by P itself. The rule Input-Send enqueues

a pair (e,v) into machine (i,n) if e ∈ MRecvs(IP [i]) and e is neither private in P nor sent by P and

v does not contain any machine identifiers with private events in its permissions. First, an event
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(Internal)(R1)
SP [i, n] = (s, id) (s, id, s ′, id′) ∈ Local(IP [i])

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id′)], BP , CP )

(Remove-Event)(R2)
SP [i, n] = (s, id) BP [i, n] = b

(s, b, pos, s ′) ∈ Rem(IP [i])) b′ = rem(b, pos)

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id)], BP [(i, n) 7→ b′], CP )

(Environment-Create)(R3)
i ∈ I \ (ICP ∪ dom(IP )) n = CP [i]

(SP , BP , CP )
i−→ (SP , BP , CP [i 7→ n + 1])

(Input-Create)(R4)
i ∈ dom(IP ) \ ICP n = CP [i] id = (i, n, IRecvs(i))

(SP , BP , CP )
i−→ (SP [(i, n) 7→ (s0, id)], BP [(i, n) 7→ b0], CP [i 7→ n + 1])

(Create-Bad)(R5)
SP [i, n] = (s, _) (s, i′, _) ∈ New(IP [i])

¬CreateOk(IP [i], i′)

(SP , BP , CP )
ϵ−→ error

(Output-Create-Outside)(R6)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i]) CreateOk(IP [i], i′)

i′′ = LP [i][i′] n′ = CP [i′′]
i′′ < dom(IP ) id′ = (i′′, n′, IRecvs(i′′))

(SP , BP , CP )
i′′−−→ (SP [(i, n) 7→ (s ′, id′)], BP , CP [i′′ 7→ n′ + 1])

(Output-Create-Inside)(R7)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i]) CreateOk(IP [i], i′)

i′′ = LP [i][i′] i′′ ∈ dom(IP ) \ IPP n′ = CP [i′′] id′ = (i′′, n′, IRecvs(i′′)) id′′ = (i′′, n′, MRecvs(IP [i′′]))

(SP , BP , CP )
i′′−−→ (SP [(i, n) 7→ (s ′, id′), (i′′, n′) 7→ (s0, id′′)], BP [(i′′, n′) 7→ b0], CP [i′′ 7→ n′ + 1])

(Create-Private)(R8)
SP [i, n] = (s, _) (s, i′, s ′) ∈ New(IP [i])

CreateOk(IP [i], i′) i′′ = LP [i][i′] i′′ ∈ IPP n′ = CP [i′′] id′ = (i′′, n′, IRecvs(i′′)) id′′ = (i′′, n′, MRecvs(IP [i′′]))

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, id′), (i′′, n′) 7→ (s0, id′′)], BP [(i′′, n′) 7→ b0], CP [i′′ 7→ n′ + 1])

(Input-Send)(R9)
BP [i, n] = b e ∈ MRecvs(IP [i]) \ (EPP ∪ ESP )

v ∈ V ∀(i′, n′, α ′) ∈ ids(v). α ′ ∈ A(e) ∧ n′ < CP [i′]

(SP , BP , CP )
((i,n),e,v )
−−−−−−−−−→ (SP , BP [(i, n) 7→ b ⊙ (e, v)], CP )

(Send-Bad)(R10)
SP [i, n] = (s, idt ) idt = (_, _, αt )

(s, idt , e, v, _) ∈ Enq(IP [i]) ¬SendOk(IP [i], αt , e, v)

(SP , BP , CP )
ϵ−→ error

(Output-Send-Outside)(R11)
SP [i, n] = (s, idt ) idt = (it , nt , αt ) it < dom(IP ) (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
((it ,nt ),e,v )
−−−−−−−−−−−→ (SP [(i, n) 7→ (s ′, idt )], BP , CP )

(Output-Send-Inside)(R12)
SP [i, n] = (s, idt )

idt = (it , nt , αt ) it ∈ dom(IP ) e ∈ ESP bt = BP [it , nt ] (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
((it ,nt ),e,v )
−−−−−−−−−−−→ (SP [(i, n) 7→ (s ′, idt )], BP [(it , nt ) 7→ bt ⊙ (e, v)], CP )

(Send-Private)(R13)
SP [i, n] = (s, idt )

idt = (it , nt , αt ) it ∈ dom(IP ) e ∈ EPP bt = BP [it , nt ] (s, idt , e, v, s ′) ∈ Enq(IP [i]) SendOk(IP [i], αt , e, v)

(SP , BP , CP )
ϵ−→ (SP [(i, n) 7→ (s ′, idt )], BP [(it , nt ) 7→ bt ⊙ (e, v)], CP )

Fig. 7. Rules for operational semantics of ModP modules

that is sent by P is not considered as an input event, which is safe since rules of output-disjointness
(Section 4.3) forbid composing P with another module that sends an event in common with P .
Second, only an event in the receives set of a machine is considered as an input event, because any

machine can send only those events that are in the permission of an identifier and the permission

set of an identifier is guaranteed to be a subset of the receives set of the machine referenced by it

(based on (WF1)). Finally, private events or payload values with private events in its permissions are

not considered as input because permission to send a private event cannot leak out of a well-formed

module (based on (WF3)).

Before executing a send statement the target machine identifier is loaded into the local store

represented by idt using an internal transition. The predicate SendOk(m̂,α , e,v) = e ∈ MSends(m̂)∧
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e ∈ α ∧ ∀(_, _, β) ∈ ids(v). β ∈ A(e) ) captures the (SendOk) specification described in Section 3.2.

Thus, machine (i,n) may only send events declared by it in MSends(IP [i]) and allowed by the

permission αt of the target machine and should not embed machine identifiers with private

permissions in the payload v . Note that the dynamic check (SendOk) helps guarantee the well-

formedness condition (WF3) and also ensures that a module receives only those events from other

modules that are its input events (and is expected to be receptive against).

The rule Output-Send-Outside sends an event to machine outside P whereas rules Output-

Send-Inside and Send-Private send an event to some machine inside P . In the former, the target

machinemt is not in the domain of IP , whereas in the latter cases the target machine is inside the

module and hence present in the domain of IP . For Send-Private, the label on the transition is ϵ as

a private event is sent. For brevity, we refer to a configuration (Sk ,Bk ,Ck ) as Gk
.

Definition 5.1 (Execution). An execution of P is a finite sequence G0
a1−→ . . . an−1−−−→ Gn

for some

n ∈ N such that Gi ai−→ Gi+1
for each i ∈ [0,n).

Let execs(P) represent the set of all possible executions of the module P . An execution is unsafe
ifGn ϵ−→ error ; otherwise, it is safe. The module P is safe, if for all τ ∈ execs(P), τ is a safe execution.

The signature of a module P is the set of labels corresponding to all externally visible transitions in

executions of P .

Definition 5.2 (Module-Signature). The signature of a module P is the set ΣP = (I \ IPP ) ∪
((I × N) × (ESP ∪ ERP ) × V). The signature is partitioned into the output signature (ICP \ IPP ) ∪
((I × N) × ESP ×V) and the input signature (I \ ICP ) ∪ ((I × N) × (ERP \ ESP ) × V).

The transitions in an execution labeled by elements of the output signature are the output

actions whereas transitions labeled by elements of the input signature are the input actions.

Definition 5.3 (Traces). Given an execution τ = G0
a1−→ . . . an−1−−−→ Gn

of P , the trace of τ is the

sequence σ obtained by removing occurrences of ϵ from the sequence a1, . . . ,an−1.

Let traces(P) represents the set of all possible traces of P . Our definition of a trace captures

externally visible operations that add dynamism in the system like machine creation and sends with

a payload that can have machine-references. If σ ∈ traces(P) then σ [ΣP ] represents the projection of
trace σ over the set ΣP where if σ = a0, . . . ,an , then σ [ΣP ] is the sequence obtained after removing

all ai such that ai < ΣP .

Definition 5.4 (Refinement). The module P refines the moduleQ , written P ≼ Q , if the following

conditions hold: (1) ICQ \ IPQ ⊆ ICP \ IPP , (2) dom(IQ) \ IPQ ⊆ (dom(IP )∪ ICP ) \ IPP , (3) ESQ ⊆ ESP ,
(4) ERQ ⊆ ERP ∪ ESP (note that (1)-(4) together imply ΣQ ⊆ ΣP ), (5) and for every trace σ of P the

projection σ [ΣQ ] is a trace of Q .

5.2 Assume-Guarantee Reasoning
The two fundamental compositionality results required for assume-guarantee reasoning are:

Theorem 5.1 (Composition Is Intersection). Let P ,Q and P | |Q be well-formed modules. For
any π ∈ Σ∗

P | |Q , π ∈ traces(P | |Q) iff π [ΣP ] ∈ traces(P) and π [ΣQ ] ∈ traces(Q). (Proof in [Desai et al. 2018])

Theorem 5.1 states that composition of modules behaves like language intersection, the traces of

the component modules completely determine traces of a composed module.

Theorem 5.2 (Composition Preserves Refinement). Let P , Q , and R be well-formed modules
such that P | |Q and P | |R are well-formed. Then R ≼ Q implies that P | |R ≼ P | |Q . (Proof in [Desai et al. 2018])
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Theorem 5.2 states that parallel composition is monotonic with respect to trace inclusion i.e. if

one module is replaced by another whose traces are a subset of the former, then the set of traces of

the resultant composite module can only be reduced.

Theorems 5.1 and 5.2 form the basis of our theory of compositional refinement and are used

for proving the principles of circular assume-guarantee reasoning underlying our compositional

testing methodology (Theorems 5.3-5.4). We introduce a generalized composition operation ∥ P,

where P is a non-empty set of modules. This operator represents the composition of all modules

in P. The binary parallel composition operator is both commutative and associative. Thus, ∥ P
is a module obtained by composing modules in P in some arbitrary order. Let P and Q be set of

modules. We say that P is a subset of Q if P can be obtained by dropping modules in Q.

Theorem 5.3 (Compositional Safety). Let ∥ P and ∥ Q be well-formed. Let ∥ P refine each
module Q ∈ Q. Suppose for each P ∈ P, there is a subset X of P ∪ Q such that P ∈ X, ∥ X is
well-formed, and ∥X is safe. Then ∥ P is safe. (Proof in [Desai et al. 2018])

When using Theorem 5.3 in practice, modules inP andQ typically consists of the implementation

and abstraction modules respectively. When proving the safety of any module P ∈ P, it is allowed

to pick any modules in Q for constraining the environment of P . To use Theorem 5.3, we need

to show that ∥ P refines each module Q ∈ Q which requires reasoning about all modules in P
together. The following theorem shows that the refinement between ∥ P and Q can also be checked

compositionally.

Theorem 5.4 (Circular Assume-Guarantee). Let ∥ P and ∥ Q be well-formed. Suppose for
each module Q ∈ Q there is a subset X of P ∪ Q such that Q < X, ∥X is well-formed, and ∥X refines
Q . Then ∥ P refines each module Q ∈ Q. (Proof in [Desai et al. 2018])

Theorem 5.4 states that to show that ∥ P refines Q ∈ Q, any subset of modules in P and Q can

be picked as long as Q is not picked. Therefore, it is possible to perform sound circular reasoning,
i.e., use Q1 to prove refinement of Q2 and Q2 to prove refinement of Q1. This capability of circular

reasoning is essential for compositional testing of the distributed systems we have implemented.

Note that ∥ P refines every submodule of Q is implied by ∥ P refines module ∥ Q. If ∥ P refines

∥ Q, then using Theorem 5.1, ∥ P would refine each individual submodule in Q as well. Similarly, if

∥ P refines every submodule of Q and ∥ Q is a well-formed module, then ∥ P refines module ∥ Q.

6 FROM THEORY TO PRACTICE
Theorems 5.3 and 5.4 indicate that there are two kinds of obligations that result from assume-

guarantee reasoning—safety and refinement. Although these obligations can be verified using

proof techniques, the focus of ModP is to use systematic testing to falsify them. ModP allows

the programmer to write each obligation as a test declaration. The declaration test tname: P

introduces a safety test obligation that the executions of module P do not result in a failure (module

P is safe). The declaration test tname: P refines Q introduces a test obligation that module P
refines module Q. These test obligations are automatically discharged using ModP’s systematic

testing engine (Section 7).

Fault-tolerant services software stack.We illustrate using the protocol stack in Figure 1, howwe

used ModP to test a complex distributed system compositionally. We implemented two distributed

services: (i) distributed atomic commit of updates to partitioned data using two-phase commit [Bern-

stein et al. 1986; Gray and Lamport 2006], and (ii) distributed data structures: hash-table and list.

These distributed services use State Machine Replication (SMR) for fault-tolerance [Schneider 1990].

We implement distributed transaction commit using the two-phase commit protocol, which uses

a single coordinator state machine to atomically commit updates across multiple participant state
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machines. Hashtable and list are implemented as deterministic state machines with PUT and GET
operations. These services by themselves are not tolerant to node failures. We use SMR to make the

two-phase commit and the data structures fault-tolerant by replicating the deterministic coordinator,

participant, and hash-table (list) state-machines across multiple nodes. We implemented Multi-

Paxos [Lamport 1998] and Chain-Replication [van Renesse and Schneider 2004] based SMR, these

protocols guarantee that a consistent sequence of events is fed to the deterministic (replicated)

state machines running on multiple nodes. These events could be operations on a data-structure or

operations for two-phase-commit. Multi-Paxos and Chain-Replication, in turn, use different sub-

protocols. Though both these protocols provide linearizability guarantees their implementations

are very different with distinct fault models and hence acts as an excellent case study for module

(protocol) substitution. The protocols in the software stack use various OS services like timers,

network channels, and storage services which are not implemented in ModP. We provide over
approximating models for these libraries in ModP which are used during testing but replaced

with the library, and OS calls for real execution. We implemented the safety specifications (as

spec. machines) of all the protocols as described in their respective paper. The table below shows

examples of specifications checked for some of the distributed protocols.

Protocol Specifications

2PC Transactions are atomic [Gray 1978] (2PCSpec)
Chain Repl. All invariants in [van Renesse and Schneider 2004], cmd-log consistency (CRSpec)
Multi-Paxos Consensus requirements [Lamport 2001], log consistency [Van Renesse and Altinbuken 2015] (MPSpec)

Fig. 8. Specifications checked for each protocol
Compositionally testing transaction-commit service. Figure 9 presents a simplified version

of the test-script used for compositionally testing the transaction-commit service.

Fig. 9. Compositional Testing of Transaction Commit Service

The modules 2PC, MultiPaxosSMR,

ChainRepSMR represent the imple-

mentations of the two-phase

commit, Multi-Paxos based SMR,

and Chain-Replication based SMR

protocols respectively. The module

SMRLinearizAbs represent the lin-

earizability abstraction of the SMR

service, both Multi-Paxos based SMR

and Chain-Replication based SMR

provide this abstraction. The module

SMRClientAbs represent the abstraction

of any client of the SMR service.

OSServAbs implements the models

for mocking OS services like timers,

network channels, and storage. A

failure injector machine that randomly

halts machines in the program is

also added as part of the OSServAbs.

There are two sets of implementation

modules Pm ={2PC, MultiPaxosSMR, OSServAbs} or Pc ={2PC, ChainRepSMR, OSServAbs} representing

the Multi-Paxos and Chain-Replication based versions. The set of abstraction modules is Q
={SMRClientAbs, SMRLinearizAbs, OSServAbs}. The test obligation mono represents the monolithic

testing problem for transaction-commit service.

Similar to property-based testing [Arts et al. 2008], the programmer can attach specifications

to modules under test using the assert constructor (e.g., Figure 9-line 5). Using Theorem 5.3, we
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can decompose the monolithic problem into safety tests t1 and t2 under the assumption that each

module in Pm refines each module in Q. This assumption is then validated using the Theorem 5.4

and tests t3, t4. The power of compositional reasoning is substitutability; if the programmer wants

to migrate the transaction commit service from using Multi-Paxos to use Chain-Replication then he

just needs to validate ChainRepSMR in isolation using tests t6 and t7. The tests t5 and t8 are substitutes

for the refinement checks t4 andt7 since the spec. machines (from the table) assert the linearizability

abstraction of these protocols.

The test declarations used in practice are a bit more involved than Figure 9. There are two

main points: (1) For each test declaration, the programmer provides a finite test harness module

comprising non-deterministic machines that close the module under test by either supplying inputs

or injecting failures. The programmer may provide a collection of test harnesses modules for each

test declaration to cover various testing scenarios for each test obligation. (2) In some cases, the

module constructors like hide and rename have to be used to make modules composable or create

the right projection relation. Figure 9 (line 22-29) represent the test-script we used to perform test

t7. We had to hide internal events sent to the replicated machine to create the right projection

relation for refinement.

7 ModP TOOL CHAIN
In this section, we describe the implementation of the ModP toolchain (Figure 10).

The ModP toolchain is available as part of the P programming framework [P-GitHub 2018].

Implementation

Specification

Abstraction

Test

Compiler 
Toolchain

ModP 
systematic 

testing 
tool

C# Code

Wrappers

Autogen
 C Impl.

ModP 
deployment 

tool

OS, libs

Wrappers

ModP
 Runtime

Autogen
 Impl.

Target Platform

(Reproducible) Error Trace

ModP Program

Fig. 10. ModP Programming Framework

Compiler. AModP program comprises

four blocks — implementation modules,

specifications monitors, abstraction mod-

ules and tests. The compiler static-analysis

of the source code not only performs the

usual type-correctness checks on the code

of machines but also checks that con-

structed modules are well-formed, and test

declarations are legal. The compiler gen-

erates code for each test declaration; this

generated code makes all sources of nonde-

terminism explicit and controllable by the systematic testing engine, which generates executions

in the test program checking each execution against implicit and explicit specifications. For each
test declaration, the compiler generates a standalone program that can be independently analyzed by
the back-end systematic testing engine. The compiler also generates C code which is compiled and

linked against the ModP runtime to generate application executables.

Systematic testing engine.TheModP systematic testing engine efficiently enumerates executions

resulting from scheduling and explicit nondeterministic choices. The ModP compiler generates

a standalone program for each safety test declaration. We reuse the existing P testing backends

for safety test declarations with modifications to take into account the extensions to P state

machines. There are two backends provided by P: (1) a sampling-based testing engine that explicitly

sample executions using delay-bounding based prioritization [Desai et al. 2015], and (2) a symbolic

execution engine with efficient state-merging using MultiSE [Sen et al. 2015; Yang et al. 2017].

We extended the sampling based testing engine to perform refinement testing ofModP programs

based on trace containment. Our algorithm for checking P ≼ Q consists of two phases: (1) In the

first phase, the testing engine generates all possible visible traces of the abstraction module Q and

compactly caches them in memory. The abstraction modules are generally small, and hence, all the

traces of Q can be loaded in memory for all our experiments. (2) In the second phase, the testing
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engine performs stratified sampling of the executions in P , and for each terminating execution

checks if the visible trace is contained in the cache (traces of Q). A safety bug is reported as a

sequence of visible actions that lead to an error state. In the case of refinement checking, the tool

returns a visible trace in implementation that is not contained in the abstraction.

Distributed runtime. Figure 11 shows the structure of aModP application executing on distributed
nodes. We believe that themulti-container runtime is a generic architecture for executing programs

with distributed state-machines. Each node hosts a collection of Container processes. Container is a
way of grouping collection of ModP state machines that interact closely with each other and must

reside in a common fault domain. Each Container process hosts a listener, whose job is to forward

events received from other containers to the state machines within the container. State machines

within a container are executed concurrently using a thread pool and as an optimization interacts

without serializing/deserializing the messages.
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Fig. 11. Structure of ModP application

Each node runs a NodeManager process which
listens for requests to create new Container pro-

cesses. Similarly, each Container hosts a single

ContainerManager that services requests for cre-
ations of new state machines within the con-

tainer. In the typical case, each node has one

NodeManager process and one Container pro-

cess executing on it, but ModP also supports a

collection of Containers per node enabling em-

ulation of large-scale services running on only

a handful of nodes. AModP state machine can

create a new container by invoking runtime’s CreateContainer function. A state machine can

create a new local or remote state machine by specifying the hosting container’s ID. Hence, the

ModP runtime enables the programmer to distribute state-machines across distributed nodes and

also group them within containers for optimizing the performance.

In summary, the runtime executes the generated C representation of the ModP program and

has the capability to (1) create, destroy, and execute distributed state machines, (2) efficiently

communicate among state machines that can be distributed across physical nodes, (3) serialize data

values before sends and deserialize them after receives.

8 EVALUATION
We empirically evaluate ModP framework by compositionally implementing and testing the fault-

tolerant distributed services software stack (Figure 1). The goal of our evaluation is twofold: (1)

Demonstrate that the theory of compositional refinement helps scale systematic testing to complex

large distributed systems. We show that compositional testing leads to test-amplification in terms

of both: increasing the test-coverage and finding more bugs (faster) than the monolithic testing

approach (Section 8.2). We present anecdotal evidence of the benefits of refinement testing. It helps

find bugs that would have beenmissed otherwise when performing abstraction-based compositional

testing. (2) Demonstrate that the performance of the (rigorously tested) distributed services built

usingModP is comparable to the corresponding open-source baseline. We evaluate the performance

of the hash-table distributed service by benchmarking it on Azure cluster (Section 8.3).

8.1 Programmer Effort
The Table below shows a five-part breakdown, in source lines ofModP code, of our implementation

of the distributed service. The Impl. column represents the detailed implementation of each module

whose – generated C code can be deployed on the target platform. Specs. column represents
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Protocol Impl. Specs. Abst. Test Test

Driver Decls

2 Phase Commit 441 61 41 35 128

Chain Rep. SMR 1267 220 173 130 105

Multi-Paxos SMR 1617 101 121 92 90

Data structures 276 25 - 89 25

Total 3601 Others = 1436

Fig. 12. Source lines of ModP code

the component-level temporal properties (mon-

itors). Abst. column represents abstractions of

the modules used when testing other modules.

The Driver column represents the different fi-

nite test-harnesses written for testing each pro-

tocol in isolation. The last column represents

the test declarations across protocols to compo-

sitionally validate the “whole-system” level properties as described in Section 5.2.

8.2 Compositional Testing
The goal of our evaluation is to demonstrate the benefits of using the theory of compositional

refinement in testing distributed systems, and hence, we use the same backend engine (Section 7)

for testing both the monolithic test declaration and the corresponding compositional test decla-

rations. We use the existing systematic testing engine of P that supports state-of-the-art search

prioritization [Desai et al. 2015] and other efficient bug-finding techniques for analyzing the test

declarations. Note that the approach used for analyzing the test declarations is orthogonal to the

benefits of using compositional testing.

Compositional reasoning led to the state-space reduction and hence amplification of the test-

coverage, uncovering 20 critical bugs in our implementation of the software stack. To highlight

the benefits of usingModP-based compositional reasoning, we present two results in the context

of our case-study: (1) abstractions help amplify the test-coverage for both the testing backends,

the prioritized execution sampling and symbolic execution (Section 7), and (2) this test-coverage

amplification results in finding bugs faster than the monolithic approach. For monolithic testing,

we test the module constructed by composing the implementation modules of all the components.

Test-amplification via abstractions. Using abstractions simplifies the testing problem by

reducing the state-space. The reduction is obtained because a large number of executions in

the implementations can be represented by an exponentially small number of abstraction traces.

Fig. 13. Test-Amplification via Abstractions:
Chain-Replication Protocol

To show the kind of amplification obtained for the sam-

pling based testing approach, we conducted an experi-

ment to count the number of unique executions in the

implementation of a protocol that maps to a trace in its

abstraction. Figure 13 present the graph for the Chain-

Replication (CR) protocol with a finite test-harness that

randomly pumps in 5 update operations. The x-axis rep-
resents the traces in the abstraction sorted by y-axis
values, where the y-axis represents the number of exe-

cutions in the implementation that maps (projects) to the

trace in abstraction. The linearizability abstraction (guar-

anteed by Chain-Replication protocol) has 1931 traces for

the finite test-harness, and there were exponentially many executions in the CR implementation.

We sampled 10
6
unique executions in the CR implementation for this experiment.

The graph in Figure 13 is highly skewed and can be divided into three regions of interest: region

(A) correspond to those traces in the abstraction to which no execution mapped from the samples

set of 10
6
implementation executions which could be either because these traces correspond to a

very low probability execution in implementation or are false positives; region (B) represent those

traces that correspond to low probability executions in the implementation; region (C) represent

those executions that may lead to a lot of redundant explorations during monolithic testing. Using

linearizability abstraction helps in mitigating this skewness and hence increases the probability
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of exploring low probability behaviors in the system leading to amplification of test-coverage (as

in some cases exploring one execution in the abstraction is equivalent to exploring approx. 8779

executions in the implementation).

Protocol

Schedules Explored

Monolithic CST

MPaxos (bug1) 13 11

2PC (bug2) 1944 19

ChainR (bug3) 2018 13

MPaxos (bug4) NF 91

T2PC (bug5) NF 112

ChainR (bug6) NF 187

ChainR (bug7) NF 782

MPaxos (bug8) NF 2176

Fig. 14. CST vs. Monolithic Testing.
(NF: Bug not found)

Next, we show that the compositional testing approach helps the

sampling based back-end to find bugs faster. We randomly chose

8 bugs (out of 20) that we found in different protocols during the

development process. We compared the performance of composi-

tional testing (CST) against the monolithic testing approach where

the entire protocol stack is composed together and considered as a

single monolithic system. We use the number of schedules explored

before finding the bug as the comparison metric. Figure 14 shows

thatModP-based compositional approach helps the sampling based

back-end find bugs faster than the monolithic approach and in most

cases, the monolithic approach fails to find the bug even after exploring 10
6
different schedules.

P also supports a symbolic execution back-end that uses the MultiSE [Sen et al. 2015; Yang et al.

2017] based approach for state-merging. To evaluate the test amplification obtained for the symbolic

execution back-end, we compared the performance of the testing engine for the monolithic testing

problem and its decompositions from Figure 9. We performed the test mono using the symbolic

engine for a finite test-harness where the 2PC performs 5 transactions. The symbolic engine could

not explore all possible execution of the problem even after 10 hrs. We performed the tests t1, t2,

t5, t8 (for the same finite test-harness) and the symbolic engine was able to explore all possible

executions for each decomposed test in 1.3 hours (total). The upshot of our module system is that

we can get complete test-coverage (guaranteeing absence of bugs) for a finite test-harness which

was not possible when doing monolithic testing.

We describe a few of these bugs in detail to illustrate the diversity of bugs found in practice.

1. ChainR (bug7) represents a consistency bug that violates the update propagation invariant in [van

Renesse and Schneider 2004]. The bug was in the chain repair logic and can be reproduced only

when an intermediate node in the chain that has uncommitted operations, first becomes a tail

node because of tail failure and then a head node on the head failure. This specific scenario could

not be uncovered using monolithic testing but is triggered when testing the Chain-Replication

protocol in isolation because of the state-space reduction obtained using abstractions.

2. MPaxos (bug4) represents a bug in our acceptor logic implementation that violates the P2c

invariant in [Lamport 2001]. For this bug to manifest, it requires multiple leaders (proposers) in

the Multi-Paxos system to make a decision based on an incorrect promise from the acceptor.

In a monolithic system, because of the explosion of non-deterministic choices possible the

probability of triggering a failure that leads to choosing multiple leaders is extremely low. When

compositionally testing Multi-Paxos, we compose it with a coarse-grained abstraction of the

leader election protocol. The abstraction non-deterministically chooses any Multi-Paxos node as

a leader and hence, increasing the probability of triggering a behavior with multiple leaders.

3. Meaningful testing requires that the abstractions used during compositional reasoning are

sound abstractions of the components being replaced. We were able to uncover scenarios

where bugs could have been missed during testing because of an unsound abstraction. The

linearizability abstraction was used when testing the distributed services built on top of SMR. Our

implementation of the abstraction guaranteed that for every request there is a single response.

For Chain-Replication protocol (as described in [van Renesse and Schneider 2004]), in a rare

scenario when the tail node of the system fails and after the system has recovered, there is a

possibility that a request may be responded multiple times. Our refinement checker was able
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to find this unsound assumption in the linearizability abstraction which led to modifying our

Chain-Replication implementation. This bug could have caused an error in the client of the

Chain-Replication protocol as it was tested against the unsound linearizability abstraction.

During compositional systematic testing, abstractions are used for decomposition. False positives

can occur if the abstractions used are too coarse-grained and contain behaviors not present in the

implementation. The number of false positives uncovered during compositional testing was low (4)

compared to the real bugs that we found. We think that this could be because the protocols that we

considered in this paper have well-studied and known abstractions.

8.3 Performance Evaluation
We would like to answer the question: Can the distributed applications build modularly using

ModP with the aim of scalable compositional testing rival the performance of corresponding

state-of-the-art implementations? We compare the performance of the code generated byModP
for the fault-tolerant hash-table built using Multi-Paxos against the hash-table built using the

popular open-source reference implementation of Multi-Paxos from the EPaxos codebase [Moraru

et al. 2013a,b]. All benchmarking experiments for the distributed services were run on A3 Virtual

Machine (with 4-core Intel Xeon E5-2660 2.20GHz Processor, 7GB RAM) instances on Azure.

Fig. 15. Performance of ModP HashTable using Multi-
Paxos (MP) is comparable with an open source baseline
implementation (mean over 60s close-loop client runs).

To measure the update throughput (when

there are no node failures in the system), we

use clients that pump in requests in a closed

loop; on getting a response for an outstand-

ing request, the client goes right back to send-

ing the next request. We scale the workload by

changing the number of parallel clients from 2

to 128. For the experiments, each replica exe-

cutes on a separate VM. Figure 15 summarizes

our result for one fault-tolerant (1FT = 3 paxos

nodes) and two fault-tolerant (2FT = 5 paxos

nodes) hash-tables. We find the systematically

testedModP implementation achieves between

72%(2FT, 64 clients) to 80% (1FT, 64 clients) of

peak throughput of the open source baseline

(EPaxos codebase [Moraru et al. 2013a,b]). The open source implementation of the E-Paxos protocol

suite is highly optimized and implemented in Go language (1169 LOC). We believe that the current

performance gap between the two implementations can be further reduced by engineering our

distributed runtime. The high-level points we would like to convey from these performance number

is that it is possible to build distributed services usingModP that are rigorously tested and have

comparable performance to the open source counterpart.

9 RELATEDWORK
Assume-Guarantee reasoning has been implemented in model checkers [Alur et al. 1998; McMillan

1992, 2017] and successfully used for hardware verification [Eiríksson 2000; Henzinger et al. 1999;

McMillan 2000] and software testing [Blundell et al. 2006]. However, the present paper is the first to

apply it to distributed systems of considerable complexity and dynamic behavior. We next situate

ModP with related techniques for modeling and analysis of distributed systems.
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Formalisms and programming models.We categorize the formalisms for the modeling and

compositional analysis of dynamic systems into three foundational approaches: process algebras,

reactive modules [Alur and Henzinger 1999], and I/O automata [Lynch and Tuttle 1987].

(1) Process algebra. In the process algebra approach deriving from Hoare’s CSP [Hoare 1978] and

Milner’s CCS [Milner 1982], the π -calculus [Milner et al. 1992; Pierce and Turner 2000] has become

the de facto standard in modeling mobility and reconfigurability for applications with message-

based communication. The popular approach to reasoning about behavior in these formalisms

is the notions of equivalence and congruence: weak and strong bisimulation, which involves

examining the state transition structure of the two systems. There’s also extensive literature on

observational equivalence in π -calculus based on trace inclusion [Cortier and Delaune 2009].

Extensions of π -calculus such as asynchronous π -calculus, distributed join calculus [Fournet and

Gonthier 1996; Fournet et al. 1996], Dπ -calculus [Riely and Hennessy 1998] deal with distributed

systems challenges like asynchrony and failures respectively.ModP chooses Actors [Agha 1986]
as its model of computation, and our theory of compositional refinement uses trace inclusion

based only on the externally visible behavior as it dramatically simplifies our refinement testing
framework. InModP, abstractions (modules) are state machines capable of expressing arbitrary

trace properties. More recent work like session types [Castagna et al. 2009; Dezani-Ciancaglini and

De’Liguoro 2009; Honda et al. 2016] and behavioral-types [Ancona et al. 2016] that have their roots

in process calculi can encode abstractions in the type language (e.g., [Brady 2016]).

(2) Reactive modules. Reactive modules [Alur and Henzinger 1999] is a modeling language for

concurrent systems. Modules communicate via single-writer multiple-reader shared variables and a

global clock drives each module in lockstep. Dynamic Reactive Modules [Fisher et al. 2011] (DRM)

is an extension of Reactive Modules with support for the dynamic creation of modules and dynamic

topology. Dynamic discrete systems [Fisher et al. 2011] gives the semantics of dynamic reactive

modules to model the creation of module instances and the refinement relation between dynamic

reactive modules is defined using a specialized notion of transition system refinement. DRM does

not formalize a compositionality theorem for the hide operation. Also, our module system is novel

compared to DRM because of the fundamental differences in the supported programming model.

(3) I/O automata. Dynamic I/O automata (DIOA) [Attie and Lynch 2001] is a compositional model

of dynamic systems, based on I/O automata [Lynch and Tuttle 1987]. DIOA is primarily a (set-

theoretic) mathematical model, rather than a programming language or calculus. Our notion of

parallel composition, trace monotonicity, and trace inclusion based on externally visible actions is

inspired from DIOA and is formalized for the compositional reasoning of actor programs.ModP
incorporates these ideas into a practical programming framework for building distributed systems.

Verification of distributed systems. There has been a lot of work towards reasoning about

concurrent systems using program logics deriving from Hoare logic [Floyd 1993; Hoare 1969] –

which includes rely-guarantee reasoning [Gavran et al. 2015; Vafeiadis and Parkinson 2007; Xu

et al. 1997] and concurrent separation logic [Feng et al. 2007; Leino and Müller 2009; O’Hearn

2007]. Actor services [Summers and Müller 2016] propose program logic for modular proofs of

actor programs. DISEL [Sergey et al. 2018] provides a language to implement and verify distributed

systems compositionally. The goal of these techniques is similar to ours, enable compositional

reasoning; they decompose reasoning along the syntactic structure of the program and emphasize

modularity principles that allow proofs to be easily constructed, maintained and reused. They

require fine-grained specifications at the level of event-handler, in our case programmer writes

specifications for components as abstractions. The focus on compositional testing instead of proof

allows us to attach an abstraction to an entire protocol rather than individual actions within that

protocol (e.g., Send-hooks in DISEL), thereby reducing the annotations required for validation. The
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goal of this paper is to scale automated testing to large distributed services and to achieve this goal

we develop a theory of assume-guarantee reasoning for actor programs.

Many recent efforts like IronFleet [Hawblitzel et al. 2015], Verdi [Wilcox et al. 2015], and

Ivy [Padon et al. 2016] have produced impressive proofs of correctness for the distributed system,

but the techniques in these efforts do not naturally allow for horizontal composition. McMil-

lan [McMillan 2016] extended Ivy with a specification idiom based on reference objects and circular

assume-guarantee reasoning to perform modular verification of a cache-coherence protocol.

Systematic testing of distributed systems. Researchers have built testing tools [Lauterburg

et al. 2009; Sen and Agha 2006] for automated unit testing of Java actor programs. Mace [Killian

et al. 2007a], TeaPot [Chandra et al. 1999] and P [Desai et al. 2013] provide language support for

implementation, specification and systematic testing of asynchronous systems. MaceMC [Killian

et al. 2007b] and MoDist [Yang et al. 2009] operate directly on the implementation of a distributed

system and explore the space of executions to detect bugs in distributed systems. DistAlgo [Liu

et al. 2012] supports asynchronous communication model, similar to ours, and allows extraction

of efficient distributed systems implementation from the high-level specification. None of these

programming frameworks tackle the challenges of compositional testing addressed in this paper.

The conclusion of most of the researchers who developed these systems is similar to ours: monolithic

testing of distributed systems does not scale [Guo et al. 2011].

McCaffrey’s article [McCaffrey 2016] provides an excellent summary of the approaches used in

the industry for systematic testing of distributed systems. Manual-targeted testing is an effective

technique where an expert programmer provides manually crafted test-cases for finding critical

bugs. However, it requires considerable expertise and manual effort. ModP’s focus is on scaling

automated testing and hence do not consider manual-target testing as a baseline for comparison.

Property-based testing is another popular approach in industry for the semi-automatic testing of

distributed systems (e.g., QuickCheck) [Arts et al. 2008; Hughes et al. 2016]).ModP’s compositional

testing approach, as well as the monolithic testing method we compare it to, can both be viewed

as property-based testing since they assert the safety properties specified as monitors given a

non-deterministic test harness. The compositional testing methodology described in this paper

is orthogonal to the technique used for analyzing the test declarations; other approaches such as

manual-targeted or property-based testing can also be used for discharging the test declarations.

10 CONCLUSION
ModP is a new programming framework that makes it easier to build, specify, and compositionally

test asynchronous systems. It introduces a module system based on the theory of compositional

trace refinement for the actor model of computation. We use ModP to implement and validate

a practical distributed systems protocol stack. ModP is effective in finding bugs quickly during

development and get orders of magnitude more test-coverage than monolithic approach. The

distributed services built using ModP achieve performance comparable to state-of-the-art open

source equivalents.
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