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Abstract. A significant challenge for large-scale deployment of au-
tonomous mobile robots is to program them with formal guarantees
and high assurance of correct operation. Our approach towards enabling
safe programming of robotics system consists of two parts: (1) a pro-
gramming language for implementing, specifying, and compositionally
(assume-guarantee) testing the high-level reactive robotics software; (2)
a runtime assurance system to ensure that the assumptions used during
design-time testing of high-level software hold at runtime. Combining
high-level programming language and its systematic testing with runtime
enforcement helps us bridge the gap between software testing that makes
assumptions about the low-level controllers and the physical world, and
the actual execution of the software on a real robotic platform in the
physical world. We implement our approach in Drona, a programming
framework for building safe robotics systems. This paper introduces the
Drona toolchain and describes how it addresses the unique challenges
involved in programming safety-critical robots.

1 Introduction

Autonomous robotics systems have diverse and safety-critical roles in society
today, including delivery systems, surveillance, and personal transportation. This
drive towards autonomy is leading to increasing levels of software complexity. To
tame this complexity and ensure safe and reliable operation of robotics systems,
we have developed tools and techniques for programming and reasoning about
them. In this paper, we present an overview of our work.

At the heart of an autonomous robot is the specialized onboard software
that must ensure safe operation without any human intervention. The robotics
software stack usually consists of several interacting modules grouped into two
categories: high-level controllers, taking discrete decisions and planning to ensure
that the robot safely achieves complex tasks, and low-level controllers, usually
consisting of closed-loop controllers and actuators that determine the robot’s
continuous dynamics.

The high-level controllers must react to events (inputs) from the physical
world as well as other components in the software stack (Figure 2). These con-
trollers are therefore implemented as concurrent event-driven software. However,
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such software can be notoriously tricky to test and debug due to nondetermin-
istic interactions with the environment and interleaving of the event handlers.
We advocate writing the high-level controller in our domain-specific language
P [1] which is suitable for expressing not only the asynchronous event-driven
computation in the controllers but also models of other software components
and the physical world (used for analysis/testing). By expressing both the con-
troller and its environment in a single programming language, we bring advanced
specification and testing techniques incorporated in P to the domain of robotics
software.

Real-world robotics systems are rarely built as a monolithic system. Instead,
they are a composition of multiple interacting components that together ensure
the desired system specification (e.g., our case study in Figure 2). P supports
a module-system for the compositional reasoning of such complex event-driven
software [2, 3]. The P module-system enables implementing each component of
the robotics software stack as a separate module and perform scalable compo-
sitional testing based on principles of assume-guarantee reasoning [4–6]. Com-
positional testing provides orders of magnitude more test-coverage compared to
the traditional monolithic systematic testing approaches [2], uncovering several
critical bugs in our implementation that could have caused safety violations.

Since the physical world often exhibits non-linear behavior, discrete-state
models of the physical world used when testing the high-level controllers are nec-
essarily approximate. Similarly, discrete-state models of the low-level controllers,
which often use machine learning techniques, are also approximate. Verification
of a high-level controller against such approximate models, although useful for
finding and fixing errors quickly, cannot give us full assurance over the runtime
behaviors of the controller. Therefore, we propose performing runtime moni-
toring of the assumptions (i.e., a discrete-state model of the environment and
low-level controllers) used during design-time testing; and on detecting a di-
vergence from the model at runtime, automatically triggering a fault recovery
procedure to bring the system into a safe state. Thus, our approach combines
modeling, specification, and testing with runtime monitoring and fault recovery
to ensure safe execution of robotics software.

In this paper, we present Drona, a programming language framework for
building safe robotics systems. We implement the software components that
must satisfy critical properties using a high-level programming language called
P [1]. P supports scalable compositional testing backend for analysis of the
asynchronous reactive programs. Drona extends P with runtime assurance [7,
8] capabilities to ensure that the assumptions made during testing about the low-
level controllers and the environment hold at runtime. Drona provides features
for specifying the robot workspace and also runtime libraries for deploying the
generated code from P compiler on ROS [9]. The Drona toolchain is publicly
available on GitHub (https://drona-org.github.io/Drona/).
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1.1 Related Work

There are three popular approaches for building robotics systems with high-
assurance of correctness:
(1) Reactive synthesis. There is increasing interest towards synthesizing re-
active robotics controllers from temporal logic [10–13]. The programmer de-
scribes the system requirements in a high-level specification language and uses
automated synthesis techniques for generating correct-by-construction high-level
controllers. Tools like TuLip [14] and LTLMoP [15] construct a finite transition
system that serves as an abstract model of the physical system and synthesizes a
strategy, represented by a finite state automaton, satisfying the given high-level
specification based on this model. Though this generated strategy is guaranteed
to be safe in the abstract model of the environment, this approach has following
limitations: (1) there is gap between the abstract models of the system and its
actual behavior in the physical world; (2) there is gap between the generated
strategy state-machine and its actual software implementation that interacts
with the low-level controllers; and finally (3) the synthesis approach scale poorly
both with the complexity of the mission and the size of the workspace. Other
tools such as ComPlan [12] and SMC [13] generate both high-level and low-level
plans, but still need additional work to translate these plans into reliable software
on top of robotics platforms. Our approach is to provide a high-level language to
(1) enable programmers to implement and specify the complex reactive system,
(2) leverage advances in scalable systematic-testing techniques for validation of
the actual implementation of the software, and (3) provide a safety envelope for
operation in the real physical world via runtime assurance.
(2) Reachability analysis. Reachability analysis tools [16–18] have been used
to verify robotics systems modeled as hybrid systems. If the tool successfully ex-
plores all possible reachable states of the system, then it provides a formal guar-
antee of correctness for the system model. Differently, from our work, reachability
methods require an explicit representation of the robot dynamics and often suf-
fer from scalability issues when the system has a large number of discrete states.
Also, the analysis is performed using the models of the system, and hence, there
is a gap between the models being verified and their implementation.
(3) Simulation-based falsification. Simulation-based tools for the falsifica-
tion of CPS models (e.g., [19]) are more scalable than reachability methods,
but generally, they do not provide any formal guarantees. In this approach, the
entire robotics software stack is tested by simulating it in a loop with a high-
fidelity model of the robot. The high-level controllers, the low-level controllers,
and the robot dynamics are all executed together when exploring a behavior of
the system and hence, this approach does not suffer from the gap between model
and implementation described in the previous approaches. However, a challenge
to achieving scalable coverage comes from the considerable time it can take for
simulations.

In Drona, we decompose the validation problem into two parts: (1) we
propose using systematic testing methods (known to scale for complex software
systems) for high-level software and use discrete models of the low-level software
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(ignoring dynamics), and (2) we combine it with runtime assurance [7, 8] to
tackle the challenges associated with low-level controllers that involve dynamics
and other uncertainties of the robotics system. Runtime verification has been
applied to robotics [20–23] where online monitors are used to check the status of
the system. In this paper, we use runtime assurance to address the limitations
of design-time analysis.

2 Overview

We use the case study of an autonomous drone surveillance system to present
our approach for programming safe robotics systems. We consider an application
where a drone must autonomously patrol a set of locations in a city. Figure 1(a)
shows a snapshot of the workspace in the Gazebo simulator [24]. Figure 1(b)
presents the obstacle map for the workspace with the surveillance points (blue
dots) and a possible path that the autonomous drone can take when performing
the surveillance task (black trajectory). We consider a simplified setting where
the obstacles in the workspace are always static (e.g., houses and parked cars).

(a) Workspace (b) Obstacle Map

Fig. 1. Case Study: Drone Surveillance System

The software stack for the drone surveillance system, even in such a simplified
setting, consists of multiple complex components (Figure 2). At the top, there
is the implementation of the surveillance protocol that ensures the application
specific properties (e.g., repeatedly visit the surveillance points in some priority
order). The rest of the components are generic components such as the motion
planner, the motion primitives and the perception module that together ensure
safe movement of the drone in the workspace. The surveillance protocol generates
the next target location for the drone. The motion planner computes a motion
plan which is a sequence of waypoints from the current location to the target
location. The waypoints w1 . . . w6 in Figure 1(b) represent one such motion plan
generated by the planner and the dotted lines represent the reference trajectory
for the drone.
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Fig. 2. Robotics Software Stack

The motion primitives on re-
ceiving the next waypoint gen-
erate the required low-level con-
trols necessary to follow the refer-
ence trajectory. The trajectory in
Figure 1(b) represents the actual
path of the drone, which deviates
from the reference trajectory be-
cause of the underlying dynamics
and disturbances. The flight con-
troller module maintains informa-
tion about the mode of operation
of the system and ensures that the
critical events are prioritized cor-

rectly in all the modes. The perception module is used for detection obstacles
and passing the information to the planner and controller to avoid a collision.

Programming the robotics software stack (Figure 2) is challenging as it con-
sists of multiple components, each implementing a complicated protocol, and
continuously interacting with each other for accomplishing the mission safely.
These components may, in turn, use third-party or machine-learning components
that are hard to verify or test for correctness at design time. Hence, providing
end-to-end correctness guarantees for robotics system is challenging and requires
advances in both design time (static) and runtime analysis research.

2.1 Drona: Programming Framework for Safe Robotics

Figure 3 provides an overview of the Drona toolchain, a unified framework for
modeling, implementing and testing safe robotics systems.

Fig. 3. Drona Tool Chain

The challenges in building safe robotics system span across the domains of
programming languages, systematic testing, and runtime verification.
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(1) Safe programming of reactive robotics software stack . For assured
autonomy, the robotics software stack must be reactive to both, events happen-
ing in the environment as well as events that are triggered by a change in state
of the robot. For example, the drone must correctly handle a battery low event,
which might involve multiple components collaborating to ensure that the drone
lands safely or navigates to the battery charging station in time. Safe program-
ming of such a reactive behavior is notoriously hard as it must reliably handle
concurrency and event-driven interaction among the components. Hence, the
first challenge is to design a programming language that helps succinctly imple-
ment the event-driven software stack at a higher level of abstraction. Moreover,
the programming language must also support modular design and implemen-
tation as the robotics software is in general built as a composition of several
components.

For addressing this challenge, Drona uses the P programming language
framework (Figure 3 B1). The P module system allows modular implementa-
tion of software stack where each component (protocol) is implemented as a
separate module and modules are assembled (composed) together to build the
complex system (Section 3). Further details about the P programming language
is provided in Section 3 and in [2, 3].

A Drona application consists of four blocks—implementation, specification,
workspace configuration, and test-driver. The implementation block is a collec-
tion of P modules implementing the high-level controllers. Specification block
capture the application specific correctness properties. The workspace configura-
tion XML file provides details about the workspace, like the size of the workspace
grid, location of static obstacles, location of battery charging points, and the
starting position of each robot. The test-driver block implements the finite en-
vironment state machines (models) and abstractions of untrusted components
to close the system for systematic testing.

(2) Scalable Systematic Testing of Reactive Robotics System . Program-
mers find it difficult to correctly implement an event-driven system as it in-
volves reasoning about numerous program control paths resulting from the non-
deterministic interleaving of the event handlers. Unfortunately, even the state-of-
the-art systematic testing techniques scale poorly with increasing system com-
plexity. Moreover, when implementing robotics software, the programmer may
use several uncertified components (red blocks in Figure 2). These components
are hard to analyze (e.g., black box machine-learning modules) or are provided
by third-party. The programming and testing framework must, therefore, pro-
vide primitives for implementing the abstractions or models of these components.
Hence, the second challenge is to design a testing framework that enables scal-
able analysis of event-driven robotics software and also allows easy substitution
of implementation modules with their abstractions (models) during testing.

One can scale systematic testing to large, industrial-scale implementations
by decomposing the system-level testing problem into a collection of component-
level testing problems. Moreover, the results of component-level testing can be
lifted to the whole system level by leveraging the theory of assume-guarantee
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(AG) reasoning. Drona leverages the compositional testing [2, 3] backend of P
(Figure 3 B2) for addressing this challenge. The compiler generates a transla-
tion of the system implementation into a decomposed component-level testing
problems. For each decomposed test instance the systematic testing tool enumer-
ates executions resulting from scheduling and explicit nondeterministic choices.
A programmer typically spends the initial part of development in the itera-
tive edit-compile-test-debug loop enabled by our systematic testing tool. The
feedback from the tool is an error trace that picks a particular sequence of non-
deterministic choices leading to the error. Compositional testing provides orders
of magnitude more test-coverage compared to the traditional monolithic system-
atic testing approaches [2], uncovering several critical bugs in our implementation
that could have caused safety violations.
(3) Guaranteeing safety when using untrusted components. In practice,
when building a robotics software stack, the programmer may use several un-
certified components (red blocks in Figure 2). For example, implementing an
on-the-fly motion planner may involve solving an optimization problem or us-
ing an efficient search technique that relies on a solver or a third-party library
(e.g., OMPL). Similarly, motion primitives are either designed using machine-
learning techniques or optimized for specific tasks without considering safety or
are off-the-shelf controllers provided by third parties. Ultimately, in the pres-
ence of such uncertified or hard-to-verify components, no formal guarantees can
be provided using design-time testing or verification techniques. The final chal-
lenge, therefore, is to design a runtime assurance framework that guarantees the
safety of the system at runtime even when the untrusted components violate the
assumptions made during design time.

Drona extends the P programming framework with capabilities for runtime
assurance, it supports efficient online monitoring of design time assumptions and
allows the programmer to specify recovery mechanism in case the assumptions
can be violated (Figure 3 B3). The idea is to wrap each untrusted component
inside a runtime assurance module that monitors the assumptions made for that
component during the design-time analysis and triggers a recovery procedure to
guarantee that the assumptions are not violated at runtime.

The Drona compiler also generates C code that is compiled by a standard
C compiler and linked against the runtime to create the executable that can be
deployed on the target platform, a collection of machines, or robotics system.
Runtime ensures that the behavior of a Drona program matches the semantics
validated by the systematic testing. Further details about Drona toolchain and
the case-study of programming distributed mobile robotics is available in [25].

3 P: Modular and Safe Event-Driven Programming

A significant challenge in building reactive robotics software is safe asynchronous
event-driven programming. Asynchrony and reactivity are challenging to get
right because it inevitably leads to the concurrency with its notorious pitfalls of
race conditions and Heisenbugs. To address the challenges of asynchronous com-
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putation, we have developed P [1] (https://github.com/p-org/P), a (domain-
specific) programming language for modeling, specifying and compositionally
testing protocols in asynchronous event-driven applications.

The P programmer writes the protocol and its specification at a high-level.
P provides first-class support for modeling concurrency, specifying safety and
liveness properties, and checking that the program satisfies its specification [26,
27]. In these capabilities, it is similar to TLA+ [28] and SPIN [29]. Unlike TLA+
and SPIN, a P program can also be compiled into executable C code. This ca-
pability bridges the gap between high-level model and low-level implementation
and eliminates a massive hurdle to the acceptance of formal modeling and spec-
ification among programmers.

P got its start in Microsoft software development when it was used to ship the
USB 3.0 drivers in Windows 8.1 and Windows Phone. P enabled the detection
and debugging of hundreds of race conditions and Heisenbugs early on in the
design of the drivers. Since then, P has been used to ship many more drivers
in subsequent versions of Windows. More recently, we have used P to build
fault-tolerant distributed systems [2, 3] and distributed robotics systems [25].

3.1 Basic Programming Constructs

P [1] is an actor-oriented [30] programming language where actors are imple-
mented as state machines. A P program comprises state machines communi-
cating asynchronously with each other using events accompanied by typed data
values. Each machine has an input buffer, event handlers, and a local store. The
machines run concurrently, receiving and sending events, creating new machines,
and updating the local store.

We introduce the key constructs of P through a simple client-server appli-
cation (see Figure 4) implemented as a collection of P state machines. In this
example, the client sends a request to the server and waits for a response; on
receiving a response from the server, it computes the next request to send and
repeats this in a loop. The server waits for a request from the client; on receiving
a request, it interacts with a helper protocol to compute the response for the
client.

Events and Interfaces. An event declaration has a name and a payload
type associated with it. Figure 4(a) (line 2) declares an event eRequest that must
be accompanied by a tuple of type RequestType. Figure 4(a) (line 6) declares the
named tuple type RequestType. P supports primitive types like int, bool, float,
and complex types like tuples, sequences and maps. Each interface declaration
has an interface name and a set of events that the interface can receive. For
example, the interface ClientIT declared at Figure 4(b) (line 3) is willing to
receive only event eResponse. Interfaces are like symbolic names for machines.
In P, unlike in the actor model where an instance of an actor is created using
its name, an instance of a machine is created indirectly by performing new of
an interface and linking the interface to the machine separately. For example,
execution of the statement server = new ServerToClientIT at Figure 4(a) (line
17) creates a fresh instance of machine ServerImpl and stores a unique reference
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(a) Client State Machine (b) Server State Machine

Fig. 4. A Client-Server Application using P State Machines

to the new machine instance in server. The link between ServerToClientIT and
ServerImpl is provided separately by the programmer using the bind operation
(details in Section 3.2).

Machines. Figure 4(a) (line 10) declares a machine ClientImpl that is willing
to receive event eResponse, guarantees to send no event other than eRequest, and
guarantees to create (by executing new) no interface other than ServerToClientIT

. The body of a state machine contains variables and states. Each state can have
an entry function and a set of event handlers. The machine executes the entry
function each time it enters that state. After executing the entry function, the
machine tries to dequeue an event from the input buffer or blocks if the buffer
is empty. Upon dequeuing an event from the input queue of the machine, the
attached handler is executed. Figure 4(a) (line 30) declares an event-handler in
the StartPumpingRequests state for the eResponse event, the payload argument
stores the payload value associated with the dequeued eResponse event. The
machine transitions from one state to another on executing the goto statement.
Executing the statement send t,e,v adds event e with payload value v into the
buffer of the target machine t. Sends are buffered, non-blocking, and directed.
For example, the send statement Figure 4(a) (line 25) sends eRequest event to
the machine referenced by the server identifier. In P, the type of a machine-
reference variable is the name of an interface.
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Next, we walk through the implementation of the client (ClientImpl) and
the server (ServerImpl) machines in Figure 4. Let us assume that the inter-
faces ServerToClientIT, ClientIT, and HelperIT are programmatically linked
to the machines ServerImpl, ClientImpl, and HelperImpl respectively (we ex-
plain these bindings in Section 3.2). A fresh instance of a ClientImpl ma-
chine starts in the Init state and executes its entry function; it first creates
the interface ServerToClientIT that leads to the creation of an instance of the
ServerImpl machine, and then transitions to the StartPumpingRequests state. In
the StartPumpingRequests state, it sends a eRequest event to the server with a
payload value and then blocks for a eResponse event. On receiving the eResponse

event, it computes the next value to be sent to the server and transitions back
to the StartPumpingRequests state. The this keyword is the “self” identifier that
references the machine itself. The ServerImpl machine starts by creating the
HelperImpl machine and moves to the WaitForRequests state. On receiving a
eResponse event, the server interacts with the helper machine to compute the
result that it sends back to the client.

3.2 Compositional Programming

P allows the programmer to decompose a complex system into simple com-
ponents where each component is a P module. Figure 5 presents a modular
implementation of the client-server application. A primitive module in P is a set
of bindings from interfaces to state machines.

ServerModule is a primitive module consisting of machines ServerImpl and
HelperImpl where the ServerImpl machine is bound to the ServerToClientIT in-
terface and the HelperImpl machine is bound to the HelperIT interface. The
compiler ensures that the creation of an interface leads to the creation of a
machine to which it binds. For example, creation of the ServerToClientIT inter-
face (executing new ServerToClientIT) by any machine inside the module or by
any machine in the environment (i.e., outside ServerModule) would lead to the
creation of an instance of ServerImpl machine.

Fig. 5. Modular Client-Server Implementation

The client-server application
(Figure 4) can be implemented
modularly as two separate
modules ClientModule and
ServerModule; these modules
can be implemented and tested
in isolation. Modules in P are
open systems, i.e., machines
inside the module may create
interfaces that are not bound in
the module; similarly, machines
may send events to or receive
events from machines that are

not in the module. For example, the ClientImpl machine in ClientModule

creates an interface ServerToClientIT that is not bound to any machine in
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ClientModule, it sends eRequest and receives eResponse from machines that are
not in ClientModule.

Composition in P (denoted ||) is supported by type checking. If the composi-
tion type checks (typing rules for module constructors are defined in [2, 3]) then
the composition of modules behaves like language intersection over the traces of
the modules. The compiler ensures that the joint actions in the composed mod-
ule (ClientModule || ServerModule) are linked appropriately, e.g., the creation
of the interface ServerToClientIT (Figure 4(a) line 18) in ClientModule is linked
to ServerImpl in ServerModule and all the sends of eRequest events are enqueued
in the corresponding ServerImpl machine. The compiler generates C code for the
module in the implementation declaration.

Note that the indirection enabled by the use of interfaces is critical for im-
plementing the key feature of substitution required for modular programming,
i.e., the ability to seamlessly replace one implementation module with another.
For example, ServerModule’ (Figure 5 line 11) represents a module where the
server protocol is implemented by a different machine ServerImpl’. In module
ClientModule || ServerModule’, the creation of an interface ServerToClientIT

in the client machine is linked to machine ServerImpl’. The substitution feature
is also critical for compositional reasoning, in which case, an implementation
module is replaced by its abstraction.

3.3 Compositional Testing

Monolithic testing of large systems is prohibitively expensive due to an explosion
of behaviors caused by concurrency and failures. The P approach to this prob-
lem is to use the principle of assume-guarantee reasoning for decomposing the
monolithic system-level testing problem into component-level testing problems;
testing each component in isolation using abstractions of the other components.

Spec machines. In P, a programmer can specify temporal properties via
specification machines (monitors). spec s observes E1, E2 { .. } declares a
specification machine s that observes events E1 and E2. If the programmer
chooses to attach s to a module M, the code in M is instrumented automati-
cally to forward any event-payload pair (e, v) to s if e is in the observes list
of s; the handler for event e inside s executes synchronously with the delivery
of e. The specification machines observe only the output events of a module.
Thus, specification machines introduce a publish-subscribe mechanism for mon-
itoring events to check temporal specifications while testing a P module. The
module constructor assert s in P attaches specification machine s to module
P. In Figure 6(a), ReqIdsAreMonoInc and ResIdsAreMonoInc are specification ma-
chines observing events eRequest and eResponse to assert the safety property
that the reqId and resId in the payload of these events are always monotoni-
cally increasing. Note that ReqIdsAreMonoInc is a property of the client machine
and ResIdsAreMonoInc is a property of the server machine.

In P, abstractions used for assume-guarantee reasoning are also imple-
mented as modules. For example, AbstractServerModule is an abstraction of the
ServerModule where the AbstractServerImpl machine implements an abstraction
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(a) Abstraction and Specifications (b) Test Declarations for Compositional Testing

Fig. 6. Compositional Testing of the Client-Server Application using P Modules

of the interaction between ServerImpl and HelperImpl. The AbstractServerImpl

machine on receiving a request sends back a random response.

P enables decomposing the monolithic problem of checking: (assert

ReqIdsAreMonoInc, ResIdsAreMonoInc in ClientModule || ServerModule) into
four simple proof obligations. P allows the programmer to write each obliga-
tion as a test-declaration. The declaration test tname: P introduces a safety test
obligation that the executions of module P do not result in a failure/error. The
declaration test tname: P refines Q introduces a test obligation that module P

refines module Q. The notion of refinement in P is trace-containment based only
on externally visible actions, i.e., P refines Q, if every trace of P projected onto
the visible actions of Q is also a trace of Q. P automatically discharges these test
obligations using systematic testing. Using the theory of compositional safety [2,
3], we decompose the monolithic safety checking problem into two obligations
(tests) test0 and test1 (Figure 6(b)). These tests use abstractions to check that
each module satisfies its safety specification. Note that interfaces and the pro-
grammable bindings together enable substitution during compositional reason-
ing. For example, ServerToClientIT gets linked to ServerImpl in implementation
but to its abstraction AbstractServerImpl during testing.

Meaningful testing requires that these abstractions used for decomposition
be sound. To this end, P module system supports circular assume-guarantee
reasoning [2, 3] to validate the abstractions. Tests test2 and test3 perform the
necessary refinement checking to ensure the soundness of the decomposition
(test0,test1). The challenge addressed by our module system is to provide the
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theorems of compositional safety and circular assume-guarantee for a dynamic
programming model of P state machines.

P module system also provides module constructors like hide for hiding events
(interfaces) and rename for renaming of conflicting actions for more flexible com-
position. Hide operation introduces privates events (interface) into a module,
it can be used to converts some of the visible actions of a module into private
actions that are no longer part of its visible trace. For example, assume that
modules AbstractServerModule and ServerModule use event X internally for com-
pletely different purposes. In that case, the refinement check between them is
more likely to hold if X is not part of the visible trace of the abstract module.
Figure 6(b) (line 28-33) show how hide can be used in such cases.

P enables modular programming of the complex robotics software stack
where each component can be implemented as a separate module and composi-
tionally tested in isolation using the principles of assume-guarantee reasoning.
We have used P to implement robotics software stack for drones and found sev-
eral critical bugs during the development process that could have potentially lead
to a drone crash. More details along with demonstration videos are available at
https://drona-org.github.io/Drona/.

4 Safe Robotics using Runtime Assurance

When performing the compositional testing of the high-level controller, we use
abstractions or models of the low-level controllers. For carrying over the analysis
of high-level controllers performed at design time to runtime, one must ensure
that the assumptions about the low-level controllers made during testing hold
at runtime. Hence the need for a framework that supports runtime monitoring
of design time assumptions and provides safety assurance if these assumptions
can be violated.

Let us consider the example of guaranteeing safety in the presence of an
untrusted motion primitive component. A drone navigates in the 3D space by
tracking trajectories between waypoints computed by the motion planner (Fig-
ure 2). Given the next waypoint, an appropriate motion primitive is used to
track the reference trajectory. Informally, a motion primitive consists of a pre-
computed control law (sequence of control actions) that regulates the state of the
drone as a function of time. A motion primitive take as input the next waypoint
and generates the low-level control to traverse the reference trajectory from the
current position to the target waypoint. When testing the high-level controllers
in the software stack, we assume that the motion primitives safely takes the
drone from its current position to the target position by remaining inside the
green tube and use the corresponding discrete abstraction. Since the control is
optimized for performance rather than safety and also approximates the drone
dynamics, it can be potentially unsafe.

To demonstrate this, we experimented with the motion primitives provided
by the drone manufacturers. The drone was tasked to repeatedly visit locations
g1 to g4 in that order,i.e., the sequence of waypoints g1, . . . g4. The blue lines
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represent the trajectories of the drone. Given the complex dynamics of a drone
and noisy sensors, ensuring that it precisely follows a fixed trajectory (ideally a
straight line joining the waypoints) is tough.

The low-level controller (untrusted third
party controller) optimizes for time and,
hence, during high-speed maneuvers, the re-
duced control on the drone leads to overshoot
and trajectories that collide with obstacles
(represented by the red regions). Note that
the controller can be used during the major-
ity of this mission except for a few instances
of unsafe maneuvers. Hence, there is a need
for runtime verification techniques that ensure
the safety of the system when the design-time
assumptions can be violated.

We use runtime verification to monitor at
runtime the assumptions and abstractions used during systematic testing. An
online monitor is useful as it can determine if any of the assumptions (specifica-
tions) can be violated and notify the operator about the unexpected behavior or
trigger some correcting input actions to fix the problem. In our recent work [31],
we use runtime verification to monitor the assumptions about low-level con-
trollers and drone dynamics; we show that violations of these assumptions can
be predicted in time to make corrective measure and ensure overall correctness
of the mission implemented by the high-level controller. We have used runtime
assurance to build end-to-end correct robotics software stack, more details about
the framework and experiments is available in [32]

Let us revisit the experiment described earlier. We monitor the assumption
that the drone under the influence of the motion primitive will remain inside the
yellow tube.

Fig. 7. Experiment using runtime
assurance

This assumption may get violated at run-
time because of various reasons, runtime as-
surance guarantees that it can be predicted in
time and recovery operation can be triggered
to bring the drone back to the safe (green)
tube. Figure 7 presents one of the interesting
trajectories where the recovery module takes
control multiple times and ensures the overall
correctness of the mission. The red dots repre-
sent the points where the runtime monitoring
system switches control to recovery, and the
green dots represent the locations where it re-
turns control to the untrusted controller for
mission completion.
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5 Conclusion

Drona is a novel programming framework that makes it easier to implement,
specify, and compositionally test robotics software. It uses a mechanism based on
runtime assurance to ensure that the assumptions about the untrusted compo-
nents in the software stack hold at runtime. We firmly believe that this combina-
tion of design time techniques like programming languages and testing with run-
time assurance is the right step towards solving the problem of building robust
robotics systems. P enables modular implementation of the software stack and
is effective in finding critical software bugs in our implementation; the runtime
assurance extension helps ensure safety if there are bugs in the untrusted soft-
ware components. We have evaluated Drona by deploying the generated code
both on real drone platforms and running rigorous simulations in high-fidelity
drone simulators. Both Drona (https://drona-org.github.io/Drona/) and
P (https://github.com/p-org/P) are publicly available. For future work, we
are investigating the role a system like Drona can play in the design and im-
plementation of verified learning-based robotics, and more generally for verified
artificial intelligence [33], where we believe runtime assurance will play a central
role.
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