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Abstract
We consider the problem of provably verifying that an asyn-
chronous message-passing system satisfies its local asser-
tions. We present a novel reduction scheme for asynchronous
event-driven programs that finds almost-synchronous invari-
ants— invariants consisting of global states where mes-
sage buffers are close to empty. The reduction finds almost-
synchronous invariants and simultaneously argues that they
cover all local states. We show that asynchronous programs
often have almost-synchronous invariants and that we can
exploit this to build natural proofs that they are correct. We
implement our reduction strategy, which is sound and com-
plete, and show that it is more effective in proving programs
correct as well as more efficient in finding bugs in several
programs, compared to current search strategies which al-
most always diverge. The high point of our experiments
is that our technique can prove the Windows Phone USB
Driver written in P [9] correct for the responsiveness prop-
erty, which was hitherto not provable using state-of-the-art
model-checkers.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming— Distributed pro-
gramming; D.2.4 [Software Engineering]: Software/Pro-
gram Verification— Correctness proofs, Model checking;
D.2.5 [Software Engineering]: Testing and Debugging

Keywords natural proofs; almost-synchronous reductions;
asynchronous programs; concurrency; reductions; distributed
programs
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1. Introduction
Writing correct asynchronous event-driven programs, which
involve concurrently evolving components communicating
using messages and reacting to input events, is difficult.
One approach to testing and verification of such programs is
using model-checking, where the state-space of the program
(or the program coupled with a test harness) is explored
systematically. State-space explosion occurs due to several
reasons— explosion of the underlying data-space domain,
explosion due to the myriad interleavings caused due to
concurrency, and explosion due to the unbounded message
buffers used for communication.

In this paper, our aim is to build model-checking tech-
niques that provably verify asynchronous event-driven pro-
grams against local assertions. In particular, we are inter-
ested in proving programs written in a recently proposed
programming language P [9], which is an actor-based pro-
gramming language which provides abstractions that hide
the underlying data and device manipulations, thus exposing
the high-level protocol. Our primary concern in this paper is
to tackle the asynchrony of message passing which causes
unbounded message buffers. Our goal is to effectively and
efficiently prove (as opposed to systematically test) event-
driven programs correct, when the number of processes and
the local data are bounded, but when message buffers are
unbounded.

The classical approach to tackle state-space explosion
when systematically testing concurrent programs using
model-checking is partial-order reduction [12, 14]. A con-
current program’s execution can be viewed as a partial order
that captures causality between events. Local state reachabil-
ity can then be checked by exploring only one linearization
of every partial order, and partial-order techniques which
give methods that explore one (or a few) of these lineariza-
tions per partial order can result in considerable savings.

In the setting where we want to prove protocols correct
using model-checking, the key criterion to achieve termi-
nation is to detect cycles in the state-space. However, in
message passing systems, global state-spaces are infinite,
even when the local data domains and number of processes



are bounded, as the message buffers get unbounded. Con-
sider the simple scenario where a machine p sends a ma-
chine q unboundedly many messages, like in a producer-
consumer setting. Even in this simple scenario, systematic
model-checkers (based on partial-order reduction or other-
wise) would fail to terminate checking local assertions, even
when the local data stored at p and q is finite, since message
buffers get unbounded [14]. Consequently, techniques such
as partial-order reduction do not typically help, as they are
not aimed at exploring a finite subset of the infinite reachable
state-space that can guarantee correctness. In this paper, we
aim to find and explore such an adequate finite subset, which
we call almost-asynchronous invariants (ASI).

Almost-synchronous Invariants: Our primary thesis is
that almost-synchronous invariants often suffice to prove
asynchronous event-driven programs correct, and further-
more, a search for these invariants is also more effective
in finding bugs. Intuitively, almost-synchronous states are
those where the message buffers are close to empty, and
almost-synchronous invariants are collections of such states
that ensure that all local states have been discovered. For
instance, in the producer-consumer example above, explor-
ing the sends of p immediately followed by the receive in
q discovers an almost-synchronous invariant where message
buffers are bounded by one, though blindly exploring the
state-space would never lead to termination.

The primary contribution of this paper is a sound and
complete reduction scheme that discovers almost-synchronous
invariants using model-checking. The key idea is to explore
interleavings that keep the message buffers small, while at
the same time finding a closure argument that argues that
all local states have been discovered, at which point we can
terminate. Intuitively, for any partial order described by the
system, we aim to “cover” this using a linearization that has
small buffer sizes. The reduction scheme is quite involved,
and even subverts the semantics of the underlying system,
for instance throwing away messages into ether, to achieve
small buffer sizes.

Natural Proofs: The technique set forth in this paper is
a method involving natural proofs. Intuitively, the idea be-
hind natural proofs is to find some simplicity of real-world
instances and exploit them to find a simple proof of cor-
rectness, even when the general verification problem may be
undecidable. Traditional approaches to tackling undecidable
problems in verification are to find decidable fragments; nat-
ural proofs, in contrast, do not restrict the class of problems,
but rather strives to exploit the simplicity of the individual
instances by searching for simple proofs only.

The problem of checking whether an asynchronous pro-
gram is correct, even when the number of machines and local
data are bounded, is an undecidable problem [8]. Our thesis
is that asynchronous systems often have a natural proof us-
ing a small set of almost-synchronous global states that can
be used to prove the program correct. For instance, when a

process p sends a message to q, a global state would capture
all possible states q could be in at that time; however, the
designer of the program would actually be concerned with
and argue about the states q could be in when it receives the
message currently being sent. Almost-synchronous invari-
ants are states that capture these kinds of global states, where
message-buffers are close to empty. Finding these almost-
synchronous global states often suffices in capturing the dy-
namics of the communication protocol and proving that it
satisfies its specification.

Our automated solution strategy is hence to find such a set
of almost-synchronous invariants, prove that they are suffi-
cient to cover all local states, and that they verify the local as-
sertions. We discover almost-synchronous invariants in this
paper using state-space exploration and model-checking.

Natural proofs have been studied earlier in the entirely
different domain of logic-based verification of programs
manipulating dynamic data-structures [28, 33, 38]. In that
setting, the logics have an undecidable validity problem,
and natural proofs give sound (but incomplete) techniques
for proving validity of verification conditions in many pro-
grams.

Verifying asynchronous event-driven programs in P: One
of our primary motivations is to verify real-world asyn-
chronous event-driven device-driver programs written in P
against a property called responsiveness.

Asynchronous event-driven programs typically have lay-
ers of design, where the higher layers reason with how the
various components (or machines) interact and the proto-
col they follow, and where lower layers manage more data-
intensive computations, controlling local devices, etc. How-
ever, the programs often get written in traditional languages
that offer no mechanisms to capture these abstractions, and
hence over time leads to code where the individual layers are
no longer discernible. High level protocols, though often first
designed on paper using clean graphical state-machine ab-
stractions, eventually get lost in code, and hence verification
tools for such programs face the daunting task of extracting
these models from the programs.

The natural solution to the above problem is to build a
programming language for asynchronous event-driven pro-
grams that preserves the protocol abstractions in code. Apart
from the difficulty in designing such a language, this prob-
lem is plagued by the reluctance of programmers to adopt
a new language of programming and the discipline that it
brings. However, this precise solution was pioneered in a
new project at Microsoft Research recently, where, during
the development of Windows 8, the team building the USB
driver stack decided to use a domain-specific language for
asynchronous event-driven programs called P [9]. Programs
written in P capture the high-level protocol using a collec-
tion of interacting state machines that communicate with
each other by exchanging messages. The machines, inter-
nally, also have to do complex tasks such as process data



and perform low level control of devices, reading sensors or
controlling devices, etc., and these are modeled using exter-
nal foreign functions written in C.

The salient aspect of P is that it is a programming
paradigm where the protocol model and the lower level data
and control are simultaneously expressed in the same lan-
guage. P programs can be compiled to native code for execu-
tion, while the protocol model itself can be extracted cleanly
from the code in order to help perform analysis, especially
those relevant to finding errors in the protocol. Writing code
in P gives immediate access to designers to correct errors
found by analysis tools during the design phase itself, and
significantly contributed to building a more reliable USB
stack [9]. Maintenance of the code in P automatically keeps
these models up to date, enabling verification mechanisms
to keep up with evolving code.

The primary specification that P programs are required to
satisfy in [9] is responsiveness. Each state declares the pre-
cise set of messages a machine can handle and the precise set
of messages it will defer, implicitly asserting that all other
messages are not expected by the designer to arrive when
in this state. Receiving a message outside these sets hence
signals an error, and in device drivers, often leads drivers to
crash. The work reported in [9] includes a systematic testing
tool for the models using model-checking, where the system
is explored for hundreds of thousands of states to check for
errors. However, such model-checking seldom succeeds in
proving the program correct, since there are many sources
of infinity, including message buffer sizes.

In this paper, we present the almost-synchronous invari-
ant reduction using a model called event-driven automata
that closely resembles P programs, though our algorithm can
be easily adapted to other actor-based concurrency models as
well.

Implementation and Evaluation: We have implemented
our reduction mechanism technique for discovering almost-
synchronous invariants (ASI) of P programs. Our invariant
synthesis is built over the Zing model-checker [4], adapting
it to explore the state-space of P programs using our reduc-
tion strategy. The existing systematic model-checker for P
programs (also implemented in Zing) [9] almost never ter-
minates, and can finish exhaustive state-space exploration
only when message buffers are bounded in some fashion.
We show however that our reduction can handle such P pro-
grams without bounding buffers. We show two classes of
results over a set of P programs analyzed for the respon-
siveness property. The first class of results show that our
reduction can prove P programs correct, for arbitrary mes-
sage buffer sizes. Our reduction works faster, despite han-
dling unbounded buffers, than the naive exploration does
on reasonably bounded buffers. The second class of results
show that our reductions also help in finding bugs in incor-
rect P programs, exploring less states and performing faster
than iterated depth-first search techniques. The high point

of our experiments is the complete verification of the USB
Windows Phone Driver, which our tool can prove responsive
with no bound on message buffers, a proof that has hitherto
been impossible to achieve using current model-checkers.

2. Motivation
The key idea of this paper is that almost-synchronous invari-
ants often suffice to find proofs of local assertions in event-
driven asynchronous programs. Given an asynchronous pro-
gram with local assertions, we would like to explore a set of
reachable global states that covers all reachable local states.
However, this set of global states need not be the set of all
reachable global states (partial-order reduction [12, 14] also
works this way; all global states are not explored, but all lo-
cal states are covered).

Synchronous states, intuitively, is the set of global states
where message buffers are empty. From the perspective of
rely-guarantee reasoning [20], when a machine p sends a
message to machine q, p is not quite concerned with what
the state of q is when the send-event happens, but rather is
concerned with the state of q when it receives the message
it sends, which is essentially what synchronous states cap-
ture. However, synchronous invariants (invariants contain-
ing synchronous states) may themselves not suffice to prove
a system correct for two reasons: (a) in order to ensure that
all synchronous states have been explored, we may need to
explore asynchronous states (where message buffers are not
empty), and (b) certain local states may manifest themselves
only in asynchronous states. Almost-synchronous invariants
are invariants of the system expressed using global states
where message buffers are close to empty, but for which
inductiveness of the invariant is provable and which cov-
ers all local states. The primary thesis of this paper is that
almost-synchronous invariants (ASI) often exist for event-
driven asynchronous programs, and natural proofs that tar-
get finding such invariants can prove their correctness effi-
ciently.

We will present, in Section 4, a reduction scheme (called
almost-synchronous reduction) that will explore a selective
set of interleavings that leads to the discovery of ASIs and
simultaneously proves their inductiveness. The primary aim
of the reduction is to explore interleavings that keep the mes-
sage buffers to the minimal size needed, while still ensuring
that all local states are eventually explored. The reduction
will be sound and complete— all errors will be detected (if
the search finishes) and all reported errors will be real errors.

The first rule of our almost-synchronous reduction (pre-
sented in Section 4) is to schedule receive-events whenever
they are enabled, suppressing send-events. This rule ensures
that messages are removed from message queues (which are
FIFO and one per process) as soon as possible, thus ensuring
message buffers are contained, and as we show in practice,
often bounded. Moreover, this prioritization is sound as re-



ceive events that are enabled do not conflict with other re-
ceive or send events.

Figure 1:
Producer
Consumer
Scenario

To appreciate this prioritization, con-
sider the producer-consumer scenario on
the right, where process p sends an un-
bounded number of messages to q, which
q receives (p could do this by having a re-
curring state send out messages received
by a recurring state of q).

The reduction that we propose will
explore this scenario (partial-order) us-
ing the linearization consisting of an un-
bounded number of rounds, where in each
round p sends to q followed by q immedi-
ately receiving the message from p, thus
exploring an essentially synchronous in-
terleaving where the message buffer is bounded by 1. Fur-
thermore, and very importantly, when exploring this inter-
leaving, the search will discover that the global state repeats,
which includes the local states of all machines and the con-
tents of all message buffers. This is entirely because the mes-
sage buffer gets constantly depleted causing the global state
to recur.

Similarities and differences with partial-order reduction:
Note that techniques such as partial-order reduction [12, 14]
do not necessarily help in this scenario. Even an optimal
static or dynamic partial-order reduction that promises to
explore every partial-order using just one linearization, can-
not assuredly help. In the above example, if the linearization
chosen is the one where the sends from p are all explored
first (or a large number of them are explored) before the
corresponding receives are explored, then each global state
along this execution would be different because the mes-
sage buffer content is different in each step. This turns out
to be true for both depth-first and breadth-first searches with
partial-order reduction. Note that this problem does not, in
general, arise when systems communicate through bounded
shared memory only; it is message-passing that causes the
problem.

Partial-order reduction techniques are targeted to reduc-
ing the number of interleavings of every partially ordered
execution explored, but are not aimed at choosing the inter-
leavings explored carefully so as to reduce the global config-
uration, in particular the size of message buffers. Our almost-
asynchronous reduction, on the other hand, chooses inter-
leavings that reduce message-buffer sizes. This itself can re-
sult in a few linearizations of every partial order explored,
but this is incidental. For instance, if linearizations of a par-
tially ordered execution all have near zero buffer sizes, our
reduction could explore all of them. In fact, a more ideal re-
duction would combine almost-asynchronous reductions and
partial-order reductions; this is left as an interesting future
work to explore.

Despite the above differences, our reduction has many
similarities to partial-order reductions. In particular, the
proof that our reduction is sound and complete in discov-
ering all local states is similar to the corresponding proofs
for partial-order reduction— we show that for every exe-
cution that reaches a local state, there is another execution
within our reduced system that is equivalent (respects the
same partial order) and hence reaches the same local state.

Handling truly asynchronous behaviors: If a system
readily always presents synchronous events (all sends en-
abled always have the matching receive events immediately
enabled in the receiving process), and one can solely ex-
plore the executions with synchronous events only and keep
the sum of all message buffer sizes to 1. While this often
happens, it does not typically happen all the time in a sys-
tem’s evolution, which is why we need almost-synchronous
global states to be explored. Let us consider several scenar-
ios where such asynchrony happens and explain how our
reduction technique mitigates this.

First, consider the scenario in Figure 2 where p wants
to send a message to q and q also is sending a message
to p. Clearly, we cannot explore synchronous messages at
this point, and we need to let these sends happen with-
out their corresponding receive events. It turns out that in
many asynchronous message-passing programs, this sce-
nario does occur (even the simple elevator example in [9]
has such a scenario). However, it turns out that the system

Figure 2:

often quickly recovers where p after
sending the message, soon gets to a re-
ceive mode where it accepts the mes-
sage from q, and similarly q, after send-
ing its message, soon receives the mes-
sage from p. Hence a careful execution
of these sends followed by prioritizing
receive-events over send-events often lets
us recover a synchronous state. The re-
duction that we propose will explore such an interleaving
that leads to recovery of a synchronous state after a mild
asynchronous excursion.

Figure 3:

Let us now consider
another example, the one
shown in Figure 3— here p
is sending a message to q,
and q is sending a message to
r, where r is able to receive
messages from either. As we
have argued before, note that scheduling only synchronous
events in this situation, which means only scheduling the
send of q and the receive of r, will lead to incompleteness
(i.e., the exploration can miss local states). For instance, it
may be the case that p, after sending the message to q, sends
a message to r (denoted by the dotted arrow), and r receives
this message before the send-event of q happens. This ex-
ecution will be missed if we only scheduled synchronous



Figure 4: Rules for the construction of the destination set
when q has an empty queue and is waiting to receive an
event. Note that the dotted arrow from p marked q denotes
that p is a potential sender of q.

events. Hence it is important to note that scheduling only
synchronous events is complete only when in the current
state all sends have matching receives enabled.

The simplest way to address the problem is to enable
both the sends of p and q. However, this could lead to
flooding the message queues unnecessarily, for example if
p and q continue sending more messages. Our mechanism
will actually split this scenario into two cases. The first
case is when p is a potential sender to r, i.e., in some
state of p, it could send a message to r. When that’s the
case, the above execution we outlined could happen, and our
reduction will enable both sends of p and q, which will lead
to the execution being discovered.

However, in the case when p is not a potential sender to
r (and assuming there are no other processes), we will do
the following. We will enable the send of q (followed by the
receive of this message in r). Also, we will allow a move
that blocks process q, which means that process q will not
be able to transition any longer and remains blocked forever.
Once q is blocked, all processes that are sending messages
to q are essentially sending messages that will never get
received, and hence they can send their messages to ether,
i.e., we can lose these messages and not store them in the
configuration at all. In the above scenario, we will enable a
move that blocks q, and hence allow p to send its message
to q (which promptly gets lost), and in this way enable p to
proceed while at the same time keep message buffers small.
Note that blocking any process at any time is always sound.
Completeness is harder to establish, and crucially depends
on the topology of the system, including the communication
behavior of the machines. In the above scenario, it does turn
out that blocking q is complete as well. When there are more
processes in the system, the condition under which we will
allow such a blocking is more complex, depending on the set
of potential senders to r, etc.

All the above scenarios are treated uniformly in our re-
duction using destination sets. A destination set is a subset
of processes that is defined for every system configuration.
For configurations in which none of the receive events are
enabled, we construct its destination set and explore only
those events that send messages to a process in the destina-
tion set. Figure 4 illustrates the rules for the construction of
the destination set for the case when process q has an empty
message buffer queue and is waiting to receive a message. If
in that configuration a process p, which is a potential sender
to q, is indeed sending a message to q, the destination set we
construct is {q} and our reduction explores this send event
from p to q (Figure 4A). Otherwise, if p itself has an empty
queue and is waiting to receive (as in case Figure 4B), p
when enabled might evolve to reach a state that sends a mes-
sage to q. Our reduction, in this case, needs to explore all
interleavings of send events that might enable p and hence
the destination set is {p, q}. Finally, if p is sending a message
to a different process r (Figure 4C), p might evolve after this
send to reach a state that sends a message to q. To account
for this scenario, our reduction will need to explore the send
from p to r and hence the destination set is {r, q}.

From a given configuration, our reduction only selec-
tively explores a subset of the enabled events, namely those
that send a message to processes in the destination set. Such
selective exploration is unfair and can completely miss the
behavior of processes whose events were not explored [14,
45]. To ensure that our search is not unfair with respect
to some processes, our reduction also enables a transition
that blocks processes whose events were chosen to be se-
lectively explored. The use of blocked processes is another
unique aspect of our reduction, and crucially relies on the
semantics of message passing. A generic reduction tech-
nique, such as partial-order reduction, which works by han-
dling shared memory and message passing uniformly cannot
achieve such reductions, as what we do strays away from the
normal semantics of transitions on the global state. In other
words, we are under-approximating the global state descrip-
tion itself, while preserving soundness and completeness.

A simple P program: Figure 5 presents a toy example in P,
that implements the distributed commit protocol. The system
consists of a Client machine, a Coordinator and two Replica
machines. The client sends new transaction (newTran) re-
quests to the coordinator machine. The coordinator machine
dequeues these requests and processes them by coordinating
with the replicas in the system. It does so by sending Commit
requests to the replica machines and waiting for a Vote from
them. Once the coordinator has received votes from both the
replicas, it sends a nextTran message back to the client. Only
after receiving this message can the client send a new trans-
action to the coordinator. In this way, the protocol ensures
that the client machine sends a newTran request only after
the coordinator has finished processing the previous transac-
tion. Note that the set of messages deferred in any state of



SendRequest

Deferred:
Action:

send(Coordinator ,newTran);

start nextTran

(a) Client Machine

WaitTran
Deferred:
Action:

skip

start

AskReplicas

Deferred:
Action:

send(Replica 1 ,Commit);
send(Replica 2 ,Commit);

CollectVote
Deferred:
Action:

skip

AckToClient
Deferred:
Action:

send(Client ,nextTran);
raise(unit);

newTran

vote
unit

vote

(b) Coordinator Machine

Init
Deferred:
Action:

skip

start

SendVote
Deferred:
Action:

send(Coordinator ,Vote);
raise(unit);

Commit

unit

(c) Replica Machine

Figure 5: Distributed Commit Protocol in P

the above P program is empty; our reduction can also handle
P programs with non-empty deferred sets.

Figure 6 shows the queuing architecture for the dis-
tributed commit protocol indicating the communication pat-
tern amongst the machines in the system. An edge from p to
q represents that p is a potential sender of q. In this particular
example, the client can only send a message to the coordina-
tor; the coordinator sends a message to the client and to both
the replicas, and the replicas in turn send messages back to
the coordinator. In section 4, we use this example to describe
our reduction algorithm.

3. Event-driven automata
In this section we introduce an automaton model, called
event-driven automata (EDA), for modeling event-driven
programs, inspired by and very similar to P programs. Event-
driven automata are however a lot simpler, allowing us to de-
fine the reductions and prove precise theorems about them.
We will then lift the reductions to general programs, includ-
ing programs written in P (see Section 5).

In our automaton model, a program is a finite collection
of state machines communicating via messages. Each state
machine is a collection of states, has local variables and has

Figure 6: The queuing architecture for the Distributed Com-
mit Protocol in Figure 5.

a set of actions. Each machine also has a single FIFO queue
into which other machines can enqueue messages. We will
not restrict any of the sets (states, domain of local variables,
payload on messages, etc.) to be finite; all of them can be in-
finite, and hence our automata can model event-driven soft-
ware. For instance, P programs allow function calls in local
machines; these can be modeled in our automata using an
appropriate encoding of the call-stack in the state. Also, for
simplicity, we will assume there is no process/machine cre-
ation; our reduction does extend to this setting, but it is more
clear to explain our algorithms without these complications.
Section 5 describes how we extend our algorithms to work
on general P programs.

A message is modeled as a pair π = (m, l), consisting of a
message type m (from a finite set) and an associated payload
l belonging to some (finite or infinite) domain. Let M be
a finite set of message types and let DomM be the payload
domain. Then, a message π belongs to Π = M × DomM . We
fix M, DomM , and Π for the rest of the paper.

Let Dom be the domain for the local variables in the state
machines. Without loss in generality, we assume that each
machine in the program has a single local variable, and fix
Dom for the rest of the paper. Also let us denote f T to be the
class of all (computable) functions of type T .

Event-driven automata (EDA): An event-driven automa-
ton over Π = (M×DomM) and Dom is a tuple P = ({Pi}i∈N),
where N = {1, · · · , n}, n ∈ N, and each
Pi = (Qs

i ,Q
r
i ,Q

int
i , q

0
i , val0i ,Ti,Defi, q

err
i ), where

• Qi = Qs
i ]Qr

i ]Qint
i ]{q

err
i } is the set of states, partitioned

into states that send a message Qs
i , states that receive

messages Qr
i , internal states Qint

i , and an error state qerr
i .

• q0
i ∈ Qs

i ∪ Qr
i is the initial state of Pi;

• val0i ∈ Dom is the initial valuation for the local variable
in Pi;

• Ti is the set of transitions for Pi and is partitioned into
send transitions T s

i , receive transitions T r
i and internal

transitions T int
i .

Send transitions are of the form:



T s
i : Qs

i −→ (Qint
i ∪ {q

err
i })× (N\{i})×M × f Dom−→DomM ,

Receive transitions are of the form:
T r

i : Qr
i × M −→ (Qint

i ∪ {q
err
i }) × f Dom×DomM−→Dom

Internal transitions are of the form:
T int

i : Qint
i −→ 2(Qs

i∪Qr
i∪{q

err
i })× f Dom−→Dom

;

• Defi : Qr
i −→ 2M associates a deferred set of messages to

each receive state. �

When T s
i (q) = (q′, j,m, f ), this means that machine Pi,

when in state q and local variable valuation v can transition
to q′, sending the message of type m with a payload f (v)
to machine P j. Note that a machine cannot send messages
to itself (we assume this mainly for technical convenience).
Similarly, when T r

i (q,m) = (q′, f ), this means that Pi can re-
ceive message (m, l) when in state q and valuation v, and up-
date its state to q′ and local variable to f (v, l). When T int

i (q)
contains (q′, f ), it means that Pi can (non-deterministically)
transition from state q and local variable valuation v to state
q′ and local valuation f (v).

Note that, by definition, send transitions are determinis-
tic, and receive transitions are deterministic for any received
message; true local non-determinism is only present in in-
ternal transitions. Also note that every send or receive tran-
sition takes the control of the machine to an internal state
and is immediately followed by an internal transition which
non-deterministically transitions the machine to a send or a
receive state. From the way we have defined transitions, the
automaton can transition from any state to the error state qerr

i
and from the error state, no further transitions are enabled.

As we noted above, in our automaton model, messages
sent to a machine are stored in a FIFO queue. However, as in
P programs, we allow the possibility to influence the order
in which the messages are received by deferring them. In
a given receive state q in machine Pi, some messages can
be deferred, which is captured by the set Defi(q). When a
machine is in this state, it skips all the messages that are in
its deferred set and dequeues the first message that is not in
its deferred set.

The communication model we follow is that whenever a
machine sends a message to another machine, the message is
immediately added to the receiver’s queue. This is the same
communication model as in P, which was mainly designed to
model event-driven programs running on a single machine,
for example an operating system driver. Note that this com-
munication model is, however, general enough and can be
used to also model distributed systems where messages sent
by a machine reach the receiving machine after arbitrary
time delay (but in FIFO order). One can model such a sys-
tem by introducing a separate channel process between ev-
ery pair of machines. This process dequeues messages from
its sender and immediately forwards it to the receiver. Since
there are multiple channel processes forwarding messages to
a given machine, interleavings between them has the same
effect as having messages delivered with delay.

C[i] =
(
qi, vi, µi

)
(q′i , f ) ∈ T int

i (qi)

C
i
−→ C[i 7→ (q′i , f (vi), µi)]

internal

C[i] = (qi, vi, µi) C[ j] = (q j, v j, µ j)
T s

i (qi) = (q′i , j,m, f )

C
i! j
−−→ C

[
i 7→ (q′i , vi, µi)

][
j 7→

(
q j, v j, µ j (m, f (vi))

)] send

C[i] =
(
qi, vi, µi (m, l) µ′i

)
µi ∈ [Defi(qi) × DomM]∗ m < Defi(qi)

T r
i (qi,m) = (q′i , f )

C
i?
−→ C[i 7→ (q′i , f (vi, l), µi µ

′
i)]

receive

→ =
i
−→ ]

i! j
−−→ ]

i?
−→

Figure 7: Semantics of EDA

3.1 Formal semantics of EDA
A (global) configuration of an EDA consisting of n machines
is a tuple C = ({Ci}i∈N) , where N = {1, · · · , n}, and where
Ci (denoted as C[i]) is the local configuration of the ith

machine. The configuration C[i] belongs to (Qi×Dom×Π∗).
The first and the second component of C[i] refer to the
current state of the i’th machine and the value of its local
variable; the third component is the incoming message queue
to machine Pi, modeled as a sequence of pairs of a message
type and a payload. For a given configuration C and a local
configuration of the i’th machine C′i , let C[i 7→ C′i ] be
the configuration which is the same as C except that its ith

configuration is C′i .
The initial configuration of the EDA is Cinit where Cinit[i] =

(q0
i , val0i , ε) for all i ∈ N. The rules for the operational se-

mantics of EDAs are presented in Figure 7. The rules for
the send and the internal transitions are straightforward; the
rule for a receive transition is slightly more complex. From
a receive state qi, machine Pi skips all the messages in its
queue that are in its deferred set and dequeues the first mes-
sage m from its queue that is not in its deferred set. The state
of the machine and the value of its local variable is updated
according to the semantics of the receive transition.

Let ReachG be the set of global configurations of the EDA
that can be reached from its initial configuration, and it can
be computed as lfp(λS .Cinit ∪ {C′ | C → C′,C ∈ S }). Let
BadG = {C | C[i] = (qerr

i , vi, µi) for some vi, µi, and i ∈ N}
be the set of error configurations of the EDA. Then we say
that the EDA is safe or correct if ReachG ∩ BadG = ∅.

Note that even when the states, Dom and DomM are finite,
the problem of checking whether a given EDA is safe is an
undecidable problem [8].



4. Almost-Synchronous Reductions for
Event-driven Automata

Given an event-driven automaton, we describe in this section
a reduction that selectively explores a subset of the global
reachable configurations of the EDA, such that the explo-
ration is sufficient to cover all the local states that can be
reached by the EDA. Our reduction mechanism does so by
constructing almost-synchronous invariants, which are in-
variants for proving local assertions in asynchronous pro-
grams and are expressed as a set of global configurations of
the system where the message buffers are close to empty 1.
Finally, we argue in this section that our reduction is both
sound and complete and can be effectively used for verify-
ing local assertions in asynchronous/distributed programs.

Given an automaton P, we present a construction of a
transition system PR such that the set of reachable states of
PR correspond to a reduced set of global configurations of
P that form an almost-synchronous invariant of the system.
Unlike standard reductions, the states as well as transitions
will be different than that of the automaton. States in PR
are of the form (C, B) where C is a configuration of the
automaton P and is of the form ({Ci}i∈N), Ci ∈ (Qi × Dom ×
Π∗), and B ⊆ N is a subset of blocked machines.

As briefly motivated in Section 2, transitions in PR prior-
itize receive actions over send transitions, thereby ensuring
that the message queues remain small. From a configuration
that cannot receive any further messages from its queues,PR
enables a subset of send transitions whose choice depends on
the communication pattern amongst the machines in the cur-
rent configuration as well as the system-wide global com-
munication pattern amongst machines that is statically de-
termined. Naively enabling only a subset of send transitions
will miss out on exploring states that can be reached on tak-
ing transitions that are never enabled. To circumvent this
problem, PR allows at every step a move that blocks those
machines whose send transitions were prioritized.

Blocked machines remain forever blocked and can take
no transitions. Furthermore, messages sent to blocked ma-
chines do not end up in its queue, but are lost to ether, since
the blocked machine will anyway not receive them. Conse-
quently, these transitions deviate from the semantics of EDA,
but we will show that nevertheless the reduced transition sys-
tem is sound and complete in discovering all local states.

Before we give the construction of PR, let us first intro-
duce certain concepts that are important for understanding
the construction.

Definition 4.1 (Senders). For a given machine j ∈ N and
a configuration C of the EDA, senders(j, C) is the set of
machines i ∈ N such that C[i] = (qi, vi, µi) and T s

i (qi) =

(q′i , j,m, f ), for some qi, q′i , vi, µi,m, f . �

1 Almost-synchronous invariants are not actually global invariants! They are
in fact a subset of reachable configurations that cover all local states and that
can be used to prove that no other local states are reachable.

Intuitively, senders( j,C) is the set of all machines i that
are sending a message to machine j in configuration C. This
is used to capture the communication pattern amongst the
machines in the current configuration.

Definition 4.2 (Potential-Senders). For a given machine j ∈
N, potential-senders(j) is the set of machines i ∈ N such
that there exists a send state qi ∈ Qs

i such that T s
i (qi) =

(q′i , j,m, f ) for some q′i ,m, f . �

Unlike senders, the notion of potential senders is inde-
pendent of the current configuration. The potential senders
of a machine j is the set of all machines that can possibly
send a message to it. This depends on the system-wide global
communication pattern amongst the machines which can be
statically determined.

Definition 4.3 (Unblocked-Senders). For a given ma-
chine j ∈ N and an extended configuration (C, B),
unblocked-senders( j,C, B) is the set of machines i ∈ N such
that i < B and i ∈ senders( j,C). �

For a state (C, B) of the transition system PR, unblocked
-senders( j,C, B) = senders( j,C) \ B. Given that the ma-
chines in B are blocked and not allowed to transition,
unblocked-senders( j,C, B) captures the set of machines that
are allowed to send a message to j from the current state
(C, B).

Definition 4.4 (isReceiving). Given a machine j ∈ N and
a configuration C such that C[ j] = (q j, v j, µ j), the predicate
isReceiving( j,C) is true iff q j ∈ Qr

j.

Example 1. Consider the producer-consumer scenario in
Figure 1 and let C be its starting configuration. Then,
senders(q,C) = {p}, senders(p,C) = ∅, and p ∈

potential-senders(q). Also, isReceiving(p,C) = false while
isReceiving(q,C) = true.

Secondly, consider the scenario in Figure 3 and let C
be its starting configuration. Then, senders(r,C) = {q},
senders(q,C) = {p}, and potential-senders(r) = {p, q}.
Further, senders(p,C) = ∅, isReceiving(r,C) = true and
isReceiving(q,C) = isReceiving(p,C) = false.

We now introduce an important concept, called destina-
tion sets. From an extended configuration (C, B) of the tran-
sition system PR, our reduction mechanism only explores a
subset of the possible send transitions. From a state (C, B) of
PR, our algorithm enables only those transitions that send a
message to machines in a destination set, which is defined
below.

Definition 4.5 (Destination sets). Given an extended config-
uration (C, B), X ⊆ N, a subset of machines, is a destina-
tion set if X contains at least one machine x ∈ N such that
unblocked-senders(x,C, B) , ∅ and for all machines y such
that there is an x′ ∈ X with y ∈ potential-senders(x′) and
y < B, the following conditions hold:

1. if isReceiving(y,C) is true, then y ∈ X,



2. if for some machine z ∈ N, y ∈ unblocked-senders(z,C, B),
then z ∈ X. �

In other words, for an extended configuration (C, B), a
destination set X is a set that includes a machine who has at
least one unblocked sender, and for every machine x ∈ X, if
y is a potential sender of x, then (1) if y is in receive mode,
then y ∈ X, and (2) if y is unblocked and in send mode, then
the machine it is sending to is in X.

Note that there could be many destination sets for an ex-
tended configuration. Also, note that the set of all machines
is always a destination set, provided there is at least one ma-
chine with an unblocked sender.

Further, note that the two conditions on X are monotonic,
and hence we can start with a single machine x that has
at least one unblocked sender, and close it with respect to
the two conditions to get the least set containing x that is a
destination set.

We now fix a particular choice of destination set for every
extended configuration (C, B) that has a machine with at least
one unblocked sender. This could be the one obtained by
choosing a canonical machine with an unblocked sender and
closing it with respect to the two conditions, as described
above.

In any case, let us fix a function destination-set that maps
every extended configuration (C, B) to a destination set if
there is at least one machine with an unblocked sender, and
to the empty set otherwise.

Example 2. In the scenario in Figure 2, let C be the starting
configuration and let the blocked set B be empty. Then we
can argue that one of the destination sets is {q}. This can be
computed by taking q, which has an unblocked sender, and
closing it with respect to the conditions, which doesn’t add
any more machines. Note that {p} is also a destination set.

Thus, in the reduction, if we choose the destination set
{q}, then we will enable the send from p to q. Now if p after
sending the message gets to a receive state, the destination
set constructed for this new state will be {p}, which will force
us to enable the other send, from q to p.

Example 3. In the scenario in Figure 3, let C be the starting
configuration and let the blocked set B be empty. Then notice
that {r, q} is a destination set, with r having an unblocked
sender. However, {r} is not a destination set, and in fact {r, q}
is the smallest destination set including {r}. If we choose this
destination set, then our reduction will enable all the send
transitions to them, i.e., the sends from p to q and from q to
r. Notice the fact that p being a potential sender to r forces
our reduction to also enable the send transition from p to q.

The Reduction
We are now ready to define the reduction. The informal
algorithm for the reduction is as follows.

Given that the system is in an extended configuration (C, B),
we will explore the following transitions from it:

• If any machine is in receive mode and there is an un-
deferred message on its incoming queue, then we will
schedule all such receive events and disable all send
events.
• If no receives can happen, then we construct the set X =

destination-set(C, B). Then we schedule all sends that
send to some machine in X, including sends emanating
from X. Furthermore, we also enable a transition that
blocks the unblocked senders to X.

The first rule prioritizes receives over sends. The second
one selects a subset of sends to enable, depending on the des-
tination set computed. Furthermore, it also enables blocking
the unblocked senders to X, which results in a new configu-
ration where senders to X will not be explored, while other
send events can be explored. Also, note that sends to blocked
machines will have their messages sent to ether.

Figure 8 describes the construction of the transition sys-
tem PR with a transition relation −→⊆ (C × 2N) × (C × 2N).
The initial state of PR is (Cinit, ∅) where Cinit is the initial
configuration of the EDA P and the set of blocked machines
is empty. Let us define ReachR, in the natural way, as the
set of states reachable by PR from its initial state. By defi-
nition, ReachR is an almost-synchronous reduction of the set
of configurations that can be reached by P.

If PR is in state (C, B) such that a receive transition is
enabled from the configuration C of EDA P, PR priori-
tizes the receive transition (rule Receive in Figure 8). The
other three rules in Figure 8– send-to-unblocked , send-to-
blocked and block apply only when no receive transitions
are enabled from configuration C (captured by the condition
NoReceivesEnabled(C)). In this case, our reduction mecha-
nism first constructs the destination set for the current state
(C, B). Then, PR enables all send transitions that send a mes-
sage to a machine j belonging to this set. This case is split
into two rules: the rule send-to-unblocked handles the case
where j is not blocked and the second rule send-to-blocked
handles the case where j is blocked and the message sent
is not enqueued but is lost to ether. In the latter case, note
that the configuration of the sender machine i is only up-
dated, and the receiver j’s configuration is unaffected. At the
same time, to ensure that our selective exploration does not
miss any behaviors, from the state (C, B), PR also blocks the
machines i whose send transitions to machines j were se-
lectively enabled (rule Block). Note that Figure 8 does not
depict the internal transitions. However, PR does include in-
ternal transitions ((C, B) can transition to (C′, B) if any inter-
nal transition takes C to C′), and in fact these internal transi-
tions are prioritized so that they immediately happen. Since
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Figure 8: The reduced transition system PR whose reachable states ReachR is an almost-synchronous reduction that includes
all local states reachable in P.

there is no shared state, we do not need to interleave inter-
nal transitions in different machines, and hence they happen
atomically with the earlier send/receive transition.

Observe that whenever a machine is added to the blocked
set, it is in a send state (the rule block in Figure 8). It follows
that a machine, if blocked, remains forever blocked and can
take no further transitions.

Explaining the reduction through an example: Let us
now explain our reduction algorithm through the distributed
commit protocol presented in Figure 5. In the initial config-
uration of the system, the client machine is in a state that is
sending a message to the coordinator; the coordinator and
the replicas are in a state waiting to receive a message (isRe-
ceiving is true for both the coordinator and the replicas). The
destination-set is {Coordinator} with the unblocked-senders
being the {Client}. Hence, our ASI scheduler will execute the
send event of the client machine followed immediately by
the event where the coordinator receives this sent message
(as receives are prioritized) (in parallel, we will also enable
a move that blocks the client machine in the initial config-
uration; however there will be no further moves along this
branch of exploration). The ASI exploration now reaches a
configuration where the client is waiting for the nextTran
message from the coordinator and coordinator is sending
the Commit message to the first replica. The destination-set
in this configuration is {Replica 1}, and the ASI scheduler

this time schedules the coordinator, which sends the Commit
message, followed by the first replica receiving that message
(in parallel, we will also enable a move that blocks the co-
ordinator; but as before there will be no further moves along
this branch). The exploration now reaches a configuration
where the client is still waiting for the next transaction from
the coordinator, as before; the coordinator is sending a Com-
mit message to the second replica and the first replica is
sending the Vote message back to the coordinator. Similar
to the case before, the destination-set in this configuration
is {Replica 2} and the ASI scheduler schedules the event in
which the coordinator sends the Commit message to the sec-
ond replica (thereby moving to a state in which it is now
waiting for Vote messages) and the second replica imme-
diately receives it (in parallel, we will enable a move that
blocks the coordinator followed by the send of the Vote mes-
sage from the first replica to the coordinator). From the re-
sulting configuration, ASI explores the send of the Vote mes-
sages from Replica 1 and Replica 2 to the coordinator and
their corresponding receives (the branch where these repli-
cas are blocked will end immediately), thereby moving the
system to the configuration where both the replicas are in
their initial state and the coordinator is in the state AckTo-
Client, ready to send a nextTran message to the client ma-
chine. In this configuration, the destination-set is {Client}
and the unblocked-senders is the {Coordinator}. The ASI
scheduler, in this configuration, will thus schedule the send



of the nextTran message followed by scheduling its receive
by the client (in parallel, we also explore the branch where
the coordinator is blocked; but this branch will have no fur-
ther events). Executing this send-receive pair takes the sys-
tem back to its initial configuration and our ASI scheduler
will stop having explored all the local states and having
found no unresponsive configurations.

We now turn to the soundness and completeness argu-
ment for our ASI reductions. Let BadR = {(C, B) | C ∈

BadG}. Also let −→∗⊆ (C × 2N) × (C × 2N) be the transi-
tive closure of the single step transition relation −→ of PR.
We next argue that only exploring states that are reachable in
PR is both sound and complete with respect to proving the
correctness of the automaton P. In other words, a local state
is reachable in the program iff it is reachable in the reduced
transition system.

Theorem 4.6 (Soundness). If some state (Ce, Be) ∈ ReachR∩

BadR, then there exists a configuration C′ ∈ ReachG∩BadG.

Proof sketch: Consider thePR-reachable, error trace (Cinit, ∅)
−→ · · · (C, B) −→ · · · (Ce, Be) where (Ce, Be) ∈ BadR. Then
we can show that essentially the same set of actions can
be mimicked in P as well, except that the configurations
may contain a bit more information on certain message
buffers. As we traverse the trace in PR, at any point, we
construct a P-reachable configuration C′ which is same as
C except for the queue contents of machines that have been
already blocked along the error trace. For receive, send-to-
unblocked and block transitions along the error trace, the
update to C′ is straight forward. On a send-to-blocked tran-
sition along the error trace, the update to C′ departs from
the update to (C, B). The update to C′, in this case, follows
the semantics of EDA P and enqueues the message into the
queue of the blocked machine. As we know that machines
that have been blocked cannot take any further transitions,
this means that the message enqueued in the blocked ma-
chine’s queue will be never received by it as we move for-
ward along the error trace. Hence, though C′ differs from C
it never diverges away from it (i.e., a PR-transition enabled
from (C, B) will be always enabled from configuration C′;
also the states of machines in C′ are the same as the states of
machines in C). Since Ce ∈ BadR, it follows that configura-
tion C′e we end up with is such that C′e ∈ ReachG∩BadG. �

We next argue the completeness of our reduction mecha-
nism. For that, let us introduce→B⊆ C × C for B ⊆ N such
that C →B C′ if configuration C′ of automaton P is reach-
able from C along a P-trace that involves no transition by
any of the machines in the set B. Formally,

→B= (
⋃

i<B
i
−→) ∪ (

⋃
i<B

i! j
−−→) ∪ (

⋃
i<B

i?
−→)

and let →∗B be the transitive closure of →B. The complete-
ness result, Theorem 4.8, follows essentially from the fol-
lowing lemma. This lemma asserts that whenever we can
reach an error configuration from a configuration C in the

original program without involving any transition of ma-
chines in the set B, we can reach an error configuration in
the reduced transition system from the extended configura-
tion (C, B).

Lemma 4.7. If for configurations C,Ce and set B ⊆ N such
that C →∗B Ce where Ce ∈ BadG, then there exists C′, B′ such
that (C, B) −→∗ (C′, B′) and (C′, B′) ∈ BadR.

Proof sketch: First, we will assume that C < BadG, for oth-
erwise the lemma is obvious. The proof is by contradiction.
Assume that there are configurations C,Ce and set B ⊆ N
such that C →∗B Ce where Ce ∈ BadG, and that there is
no PR-state (C′, B′) ∈ BadR such that (C, B) −→∗ (C′, B′).
Let us consider an ordering over the space of C,Ce and B.
Let this ordering be the standard lexicographic ordering over
(N × N × N), where the first component is the length of the
trace C →∗B Ce; the second component is the sum (over all
machines) of the messages pending in the queues in configu-
ration C; and the third component is size of the complement
of the blocked set B. This is a well-founded ordering. Let
us pick configurations C,Ce and set B that satisfy all the as-
sumptions and is smallest with respect to this lexicographic
ordering.

We show that we can always make “progress” along the
C →∗B Ce trace via a PR-transition, thereby getting a smaller
counter-example with respect to the lexicographic ordering,
leading to a contradiction.

We split using two cases, the first when a receive is
enabled in configuration C, and the second when no receive
is enabled.

Case 1: Let us first consider the case when machine i (i < B)
in configuration C is ready to receive a message from its
queue. Let the→∗B-trace be τ : C →B · · · →B Ce. Now, con-
sider the case where there is a transition of machine i in the
sequence τ. Then the first transition of machine i in τ must

be a receive event. Consider the trace τ′ = C
i?
−→B C1 →B

· · · →B Ce obtained from τ by moving this receive transition
to the front; this is a valid→∗B-trace. Using rule receive in the
reduced transition system, it follows that (C, B) −→ (C1, B)
and also that there exists no state (C′, B′) ∈ BadR such that
(C1, B) −→∗ (C′, B′). Note that τ′-suffix from C1 to Ce has a
shorter length than τ. This means that the choice C1,Ce and
B is a strictly smaller counter-example, which is a contradic-
tion.

When no transition of i is present along τ, the trace τ1 :

C →B · · ·Ce
i?
−→B C′e obtained from τ by augmenting it with

transition i? is a valid →∗B-trace such that C′e ∈ BadG. As

before, trace τ′1 = C
i?
−→B C1 →B · · ·C′e is also a valid →∗B-

trace but one whose suffix from C1 to C′e has the same length
as τ. However, note that C1 has one less message pending in
its queues compared to C. Using the same argument as the
one above, the choice C1,C′e and B is a counter-example and
is strictly smaller than C,Ce and B, which is a contradiction.



Case 2: Now consider the second case when no re-
ceive transitions are enabled in configuration C. Let X =

destination-set(C, B).
Consider the subcase where the →∗B-trace τ : C →B

· · · →B Ce contains a transition that sends a message to
x ∈ X. Let p!x be the first such transition occurring along
τ. We will argue that the transition p!x in this case can be
commuted to the beginning and it is possible to construct

a valid →∗B-trace τ′ : C
p!x
−−→B C1 · · · →B Ce. From the

rules send-to-unblocked or send-to-blocked, it follows that
(C, B) −→ (C1, B). We can argue that C1,Ce and B is a
smaller counter-example (since the suffix of τ′ from C1 is
shorter), leading to a contradiction. Now let us argue that
the first transition of p in τ is p!x (if this is so, it is easy
see that p!x can be commuted to the front). By definition,
p ∈ potential-senders(x) and p < B. We will show that in
C, p is in a state sending to x. If p is in a receive state in
C, then by the definition of destination sets, p ∈ X (since
x ∈ X, p ∈ potential-senders(x), and p is in a receive state).
This implies that in τ, before the send event by p happens,
there must be a send-event by some machine to p (since we
are in the case where the buffers to enabled receivers are
empty). Since p ∈ X, this send is a send event to X, which
contradicts the assumption that p!x was the first transition
along τ sending a message to a machine in X. If p is in a send
state in C but it is sending a message to a machine y , x,
then from the definition of destination sets, y ∈ X. Again,
this implies that τ has a transition p!y for y ∈ X before the
p!x event, which is again a contradiction. The only option
left is that p!x is enabled in configuration C.

We still need to arrive at a contradiction when the →∗B-
trace τ : C →B · · · →B Ce contains no transition
that sends a message to a machine x ∈ X. Let B′ =⋃

x∈X unblocked-senders(x,C, B) for x ∈ X. Since τ has no
transitions sending messages to X, τ involves no transi-
tions by machines in B′. Now let us show that B′ is non-
empty. Note that the machine involved in the first tran-
sition along τ is an unblocked sender. This implies that
X = destination-set(C, B) is non-empty. Hence, there must
be an unblocked sender to X (by definition of destination
sets). Hence B′ is non-empty. From the rule block, it fol-
lows that (C, B) −→ (C, B ∪ B′) . Also, C →∗B∪B′ Ce is true.
Since B ∪ B′ is strictly larger than B, the counter-example
C,Ce and B ∪ B′ is smaller, which is a contradiction. �

Theorem 4.8 (Completeness). If some configuration C ∈
ReachG ∩ BadG, then there exists C′, B′ such that (C′, B′) ∈
ReachR ∩ BadR.

Proof: The theorem follows directly from the above lemma
by substituting B in the lemma to be the empty set and C to
be the initial state Cinit of the automaton P. �

5. Lifting ASI Reductions to P
A P program [9] is a collection of state machines commu-
nicating via asynchronous events or messages. Each state
machine in P is a collection of states; it has a set of local
variables whose values are retained across the states of the
machine, has an entry method which is the state in which
the control transfers to on the creation of a new machine
and finally, has a FIFO incoming queue through which other
machines can send messages to it. Each state in a P state ma-
chine has an entry function which is the sequence of state-
ments that are first executed whenever the control reaches
that state. Additionally, each state has a set of transitions
associated with incoming message types, has a set of ac-
tion handlers associated with the incoming message types,
as well as a classification of certain message types as be-
ing deferred or ignored in the given state. After the entry
function has been executed, the P machine continues to re-
main in the same state till it receives a message in its queue.
The machine dequeues the first message from its queue that
is not deferred and checks if the message is ignored in the
current state. If it is, the message is simply dropped from
the queue, and the machine continues to remain in the same
state. If the message is not ignored, the machine dequeues
the message; the next state to which the machine transitions
to along with the update to its local state on dequeuing the
message is determined by the state’s transitions and action
handlers. P statements include function calls and calls to for-
eign functions that are used to model interaction with the en-
vironment. A P state machine can have call statements and
call transitions in it which are used to implement hierarchical
state machines.

We will describe next the mapping between P features
and the EDA we introduced in Section 3. EDAs do not sup-
port dynamic creation and deletion of machines. We did not
find this to be a serious limitation as most driver programs
written in P and distributed protocols we modeled in P had a
statically determined bounded number of machines. Hence
the global communication pattern, amongst the machines in
the EDA, required for our reductions could also be statically
determined.

Also note that we do not restrict the domain Dom for the
local variables in the state machines to be finite. The entry
statement in each state can have multiple sends which can be
encoded as a separate send state in EDA connected by local
internal transitions. The nondeterministic choice statement
can be encoded in the form of nondeterminism on internal
transitions. The set of out going transition in each P state
can be easily mapped on to transitions in EDA. Actions in P
can be expanded as a state transition logic implementing the
action handler. Similarly, the call statements and call transi-
tions can be handled by repeating the sub-state machines at
all call points. By encoding a stack in the local state of the
machines, we can model function calls in P programs, in our
automaton.



Every machine Pi in an EDA has an error state qerr
i that

can be used to model local assertions in the P program.
An important safety property in P programs is to check the
responsiveness of the system, i.e., for every receive state,
if m is the first message in the queue that is not deferred,
then there should be a receive action enabled from this state
that handles m. Checking if a P program is responsive can
be easily reduced to checking that the error state qerr

i is not
reachable, for all i ∈ N.

The upshot of the above relationship is that the reduction
algorithms for EDAs described in the earlier sections can be
easily lifted to P programs. States in P can perform multiple
actions within the state (such as internal actions and send-
ing multiple messages), but these can be broken down into
smaller states to simulate our reduction.

6. Implementation
We have implemented our ASI reductions by adapting the
Zing model-checker [4]. The P compiler translates P pro-
grams into Zing models, preserving the input programs ex-
ecution model. The explorer in Zing supports guided-search
based on a scheduler that is external to the model checker.
The ASI reduction in Zing is implemented in the form an
external ASI scheduler that guides the explorer on which set
of actions are enabled in the current state and the explorer
then iterates over these actions. The Zing program is instru-
mented appropriately to communicate the current state con-
figuration information to the ASI scheduler. This instrumen-
tation is performed automatically by our modified P com-
piler. The model is instrumented to pass information such
as (1) the current state of each state machine, whether its
in a send or a receive state (2) size of the message queues,
etc. Based on the current state of each state machine, and
the communication pattern amongst the machines, the ASI
scheduler calculates the destination set mentioned in Sec-
tion 4. Using this destination set, the set of next actions to be
performed are prioritized by the ASI scheduler and executed
by the Zing explorer.

The implementation of the reduction can be seen as a
composition of an almost synchronous ASI scheduler and
the asynchronous Zingmodel, exploring only the state space
of the composite system. Most part of the ASI reduction
can be implemented as being external to the model checker
except for the case when a state machine is pushed into a
blocked state. The blocking of a state machine is part of the
state of the system and is handled as a special case. A special
state machine called blocking-state-machine is created with
respect to each state machine in the model. The job of the
blocking-state-machine is to enqueue a special event block
in the associated state machine. Each state machine in P is
extended to handle block event in all states, such that on de-
queuing the block event it enters a new state where it keeps
dropping all enqueued messages. Now the ASI scheduler
can block a state machine by simply scheduling the corre-

sponding blocking-state-machine and atomically executing
the transitions enqueuing and dequeueing the block event.

7. Evaluation
In this section we present an empirical evaluation of the
ASI reduction approach for verifying P programs and also
evaluate it for finding bugs in them. All the experiments
reported are performed on Intel Xeon E5-2440, 2.40GHz, 12
cores (24 threads), 160GB machine running 64 bit Windows
Server OS. The Zing model checker can exploit multiple
cores during exploration as its iterative depth-first search
algorithm is highly parallel [44]. We report the timing results
in this section for the configuration when Zing is run with
24 threads and uses iterative depth bounding by default for
exploring the state space.

In order to thoroughly evaluate our ASI technique, we
evaluate it on models from various domains. We used P
for writing all our benchmarks, and used the P compiler to
generate Zing models for verification. Our benchmark suite
includes:

• the Elevator controller model described in [9],
• the OSR driver used for testing USB devices,
• the Truck Lifts distributed controller protocol,
• Time Synchronization standards protocol used for syn-

chronization of nodes in distributed systems,
• the German cache coherence protocol, and
• the Windows Phone (WP) USB driver, which is the ac-

tual driver shipped with the Windows Phone operating
system.

Note that the lines of code reported in Table 1 are for the
models when written in P, which is a domain specific lan-
guage in which protocols can be written very compactly. We
could not evaluate our ASI reduction approach on the Win-
dows 8 USB driver used in [9] as it was not available to
us. We, however, evaluated our technique on the Windows
Phone USB driver under a license agreement.

7.1 Verifying P programs:
Message buffers in P programs can become unbounded and
their systematic exploration by Zing will fail to prove such
programs correct in the presence of such behaviors [9]. In
general, the queues can become unbounded when a state
machine pushes events into them at arbitrarily fast rates.
For Zing to be able to explore such models, P users are
allowed to provide a bound on the maximum number of
occurrences of an event in a message queue. This indirectly
bounds the queue size of each state machine during the state
space exploration.

Table 1 shows the results for the Zing Bounded Model
Checker [9] as well as our ASI based reduction technique.
The Zing results are only for an under-approximation of the
state space, restricted by bounding the maximum number of



Models
Lines Zing Model Checker Almost-synchronous Invariants

of code (with buffer bounds) (with no buffer bounds)
in P Bound on max Total Time State-space Total Time Program

occurrence of an number of (h:mm) exhaustively number of (h:mm) Proved
event in queue states Explored? states Correct?

Elevator 270 2 1.4 × 106 0:22 Yes 2.8 × 104 0:08 Yes
OSR 377 2 3.1 × 105 0:16 Yes 3.9 × 103 0:02 Yes

Truck Lifts 290 2 3.3 × 107 2:07 Yes 1.1 × 105 0:24 Yes
Time Sync (Linear Topology) 2200 4 7.4 × 1010 5:34 Yes 1.0 × 107 3:07 Yes

German 280 3 > 1 × 1012 * No 4.7 × 108 2:32 Yes
Windows Phone USB Driver 1440 3 > 1 × 1012 * No 2.4 × 109 3:48 Yes

* denotes timeout after 12 hours

Table 1: Results for proof based on almost-synchronous invariants for P.

Buggy
Zing Bounded Model Checker Almost-synchronous Invariants

Models
(with buffer bounds) (with no buffer bounds)

Bound on max occurrence Total number Time Bug Total number Time Bug
of an event in queue of states (h:mm) Found? of states (h:mm) Found?

Truck Lifts 2 950005 1:17 Yes 13453 0:14 Yes
Time Sync (Ring Topology) 4 * * No 129973 1:37 Yes

German 3 595723 0:44 Yes 2345 0:10 Yes
Windows Phone USB Driver 3 1616157 2:04 Yes 23452 0:38 Yes

* denotes timeout after 12 hours

Table 2: Results for bug finding using almost-synchronous invariants for P

occurrences of an event to a constant value that was picked
by the P developers on the basis of domain knowledge [9].
On the other hand, our results for ASI reduction are for the
complete verification of the models, where message buffers
are unbounded. For ASI, we report the total number of states
explored, the time taken by the tool, and whether it was able
to prove the programs correct or not.

Our ASI reduction was able to verify completely the
Windows Phone (WP) driver and the German protocol, while
the Zing bounded model checker failed to explore the state
space completely (even when message buffers we bounded)
for these models. The P language is being mainly used in
Microsoft currently for the development of the Windows
Phone USB drivers. The most surprising result here is that
our reduction-based technique was able to verify that this
driver is responsive (i.e., there is no reachable configuration
where a machine receives a message that it cannot handle).

For comparatively smaller models, ASI was able to prove
the models correct much faster than Zing because of the
large state space reduction obtained. Zing is a state of the art
explicit-state model checker tuned for efficiently exploring
P programs. It uses state caching to avoid re-explorations.
However it does not implement partial-order reduction tech-
niques as prior experience suggested they were not very use-
ful in this domain. As described in Section 2, partial-order
reduction can easily fail to keep message buffers small (as

in the producer-consumer scenario) and hence often lead to
infinite state-spaces, which precludes exhaustive search.

We found in the ASI exploration that, for our benchmark
programs, the size of message queues never exceeded four,
thus indicating that the queues remain bound to a small size
under our reduction. On the other hand, even after bound-
ing the queue sizes, Zing bounded model checker could not
prove large P programs correct or took a very long time. It
is important to note that exploring the system with message-
buffers bounded by four does not prove the system correct
for arbitrary buffer sizes. Our technique proves the system
correct, and in the end we get to know what buffer size
would have been enough (it is not possible to compute mes-
sage buffer bounds that ensure completeness without doing
the exploration). The experimental results illustrate that test-
ing exhaustively even a highly under-approximated reach-
able space takes more time. This highly under-approximated
search is the current testing strategy for P programs, where
developers had chosen bounds on duplicate messages in
queues based on system knowledge, to explore using Zing.

7.2 Finding bugs in P programs:
To demonstrate the soundness of our approach, we created
buggy versions of the models in our benchmark suite by
introducing known safety errors in them. Table 2 shows
results in terms of the number of states explored and the



time taken before finding the bug, with and without ASI.
The search terminates as soon as a bug is found. The ta-
ble shows that our reduction technique explores orders of
magnitude less states and also finds bugs faster for all the
models. For the Time Synchronization model with nodes in
a ring topology, Zing bounded model checker failed to find
the bug while ASI was able to find it. The comparison of
ASI with naive iterative DFS and the results we obtain sug-
gest that almost-synchronous reductions may also be a good
reduction strategy for finding bugs faster. Note that several
bounding techniques have been studied earlier in the context
of finding concurrent bugs [10, 30, 43]. Finding better ex-
ploration strategies that combine these bounding techniques
with ASI is part of future work.

8. Related Work
The reachability problem for finite state machines communi-
cating via unbounded fifo queues is undecidable [8]. The un-
decidability stems from the fact that the unbounded queues
can be used to simulate the tape of a Turing machine. To
circumvent this undecidability barrier, there has been work
in several directions. It has been shown that the problem be-
comes decidable under certain restrictions like when the fi-
nite state machines communicate via unbounded lossy fifo
queues that may drop messages in an arbitrary manner [2],
when the communication is via a bag of messages and not
via fifo queues [19, 39], when only one kind of message is
present in the message queues [35], when the language of
each fifo queue is bounded [17], or when the communication
between the machines adheres to a forest architecture [22].
For verification of these machines communicating via mes-
sages, techniques that over-approximate the set of reachable
states have also been studied [8, 34].

Several under-approximate bounding techniques have
been explored to find bugs, even when the machines have
shared memory, including depth-bounding [13], bounded
context-switching reachability [22, 36, 37], bounded-phase
reachability [7], preemption-bounding [31], delay-bounding [10],
bounded-asynchrony [11], etc. These techniques systemat-
ically explore a bounded space of reachable states of the
concurrent system and are used in practice for finding bugs.
It has also been shown that several of these bounding tech-
niques admit a decidable model-checking problem even
when the underlying machines have recursion [21, 27, 36]

Unlike the above bounding techniques which are not
complete, partial order reduction (POR) methods retain
completeness while trying to avoid exploring interleavings
that have the same partial order [14, 29]. POR techniques use
persistent/stubborn sets [15, 45] or sleep sets [16] to selec-
tively search the space of reachable states of the concurrent
system in a provably complete manner. Dynamic POR [12]
and its variants [23, 24, 32, 42] including the recently pro-
posed optimal one [1] significantly improve upon the ear-
lier works by constructing these sets dynamically. Dynamic

POR for restrictions of MPI programs where synchronous
moves are sufficient have also been explored in [32, 40, 41].

Message sequence charts (MSC), which provide a speci-
fication language for specifying scenarios of different com-
munication behaviors of the system, have a partial order se-
mantics, and high-level message sequence charts can com-
bine them with choice and recursion. While checking lin-
ear time properties of scenarios of these graphs is undecid-
able [3], surprisingly, checking MSO properties over MSCs
directly was shown to be decidable in [25]. Furthermore,
this kind of model-checking can be done using linearizations
that keep the message buffers bounded [26], similar to the
almost-synchronous interleavings explored in this paper.

The work reported in [19] solves the problem of data
flow analysis for asynchronous programs using an under-
approximation and over-approximation bounding the coun-
ters representing the pending messages, where messages are
delivered without in non-fifo order. The authors in [5, 6]
present a technique where choreography of asynchronous
machines can be checked when the asynchronous communi-
cation can be replaced by synchronous communication. The
authors use their analysis technique for verifying channel
contracts in the Singularity operating system [18]. Though
our approach of almost-synchronous reduction has a simi-
lar flavor, we do not restrict our analysis to systems where
asynchronous message passing can be entirely replaced by
synchronous communication.

Our present work builds on top of P [9], which is a
language for writing asynchronous event-driven programs.
While [9] uses a model checker to systematically test P pro-
grams for responsiveness, our reduction technique provides
a methodology for verifying P programs. In addition, our ex-
periments strongly suggest that our reductions can be also
used to find bugs much faster.

9. Conclusions and Future Directions
We have shown an sound and complete reduction for asyn-
chronous event-driven programs that can effectively control
the size of message buffers, leading to faster techniques to
both prove and find bugs in programs. Exploring almost-
synchronous interleavings that grow the buffers only when
they really need to grow seems to capture more interesting
interleavings as well as discover smaller adequate invariants.

Limitations of ASI: We would like to emphasize here that
our technique is incomplete and there are simple scenarios
where the ASI reduction might not terminate and thus fail
to prove a program correct. Figure 9 shows such a scenario
where p sends an unbounded number of messages to r fol-
lowed by a message sent to q. The process q receives the
message from p, then sends a message to r. The process r
receives this message from q and then receives all the (un-
bounded number of) messages that p has sent to it. In this
scenario, we would choose {q, r} as a destination set, and



hence p!r would be enabled continuously, leading to an un-
bounded number of messages and the exploration will not
terminate.

Figure 9:

There are several inter-
esting questions worthy of
future study. First, we be-
lieve that partial-order re-
ductions can help further
reduce the number of in-
terleavings, once almost-
synchronous reductions have
curtailed the blow-up due to
unbounded message-buffers.
Combining partial-order re-
duction techniques with
almost-synchronous reduc-
tions would be worthwhile.
Secondly, though almost-
synchronous invariants often suffice, there are instances
where environment machines can flood message buffers.
We believe that in these cases, a simple over-approximation
of these channel contents will be sufficient in proving pro-
grams correct. Finding a tractable but adequate approxima-
tion scheme would be useful. Third, in the framework of
event-driven programs, it would be interesting to compare
ASI with other under-approximate bug-finding techniques
that work by bounding scheduling metrics such as delay
bounding [10] and context bounding [30]. Also, since ASI
is an independent reduction technique, there is potential in
combining it with these bounding techniques for finding
bugs faster. Finally, there are several other message-passing
domains where we believe that our reductions could be use-
ful; in particular, analysis of truly distributed programs (such
as protocols for replicated database systems in the cloud) and
analysis of MPI programs for verifying high-performance
computing algorithms could benefit from our technique.
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